杂:秋招笔试整理 文章目录杂编程题ACM模式输入输出固定数目的一维数组不固定数目的一维数组二维数组逗号隔开数据字符串固定数目多个字符串不固定数目多个字符串字符串转整数数组杂相比三四年前,最大的改变就是磨灭了对技术的热情,纯纯为了混口饭吃,虽然如今看来这口饭可能也是朝不保夕的。在这样的土地上怎么能开出创新的花?编程题ACM模式输入输出每次处理输入输出都是浪费时间,提前一次写好。ACM模式输入输出攻略 | C++篇牛客输入输出练习固定数目的一维数组输入格式31 2 3或3 1 2 3第一个3代表数
操作系统概论:C语言函数调用及栈帧 栈帧本质是一种栈,只是专门用于保存函数调用过程中的参数、返回地址等信息,逻辑上说,每个函数都有自己的栈帧,栈帧是一个函数执行的环境。然后初始化开始时开辟的空间。初始化局部变量a b c,从ebp的位置往低地址入栈保存,即保存到main函数的栈帧中。寄存器 ebp 内存放栈帧基址,寄存器 esp 内存放栈指针,二者之间的区域称为栈帧。将主调函数(当前函数)称为 Caller,被调用的函数称为 Callee。开辟后,3个push压栈了三个寄存器的值,esp 向低地址方向增长3,
Spring:面试八股 AOP为 Aspect Oriented Programming 的缩写,即面向切面编程,核心作用是在不改变方法源代码的基础上进行功能增强。Spring框架的核心模块,主要提供IoC依赖注入功能的支持。
Java:设计模式 总体来说设计模式分为三类共23种。创建型模式,共五种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。结构型模式,共七种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。行为型模式,共十一种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。简单工厂模式就是建立一个实例化对象的类,在该类中对多个对象实例化。工厂方法模式是定义了一个创建对象的抽象方法,由子类决定要实例化的类。
瑞吉外卖:异常处理与文件操作 在程序中使用异常处理器进行全局异常捕获,此处主要处理SQLIntegrityConstraintViolationException异常,在reggie->common里面新建一个全局的异常捕获类 GlobalExceptionHandler.java,加注解@ControllerAdvice,拦截两种类。文件上传成功之后回调handleAvatarSuccess方法,获取图片在服务器上的位置。然后再通过img标签展示,请求拼接好的 imageUrl,访问服务器的download。文件下载的后端代码如下。
Java:类加载器 类加载器的主要作用是加载Java类的字节码即.class文件到JVM中。每个Java类都有一个引用指向加载它的类加载器。数组类是JVM直接生成而非加载的。根据需要动态加载,已加载的类放到ClassLoader中,相同二进制名称的类只会被加载一次。继承ClassLoader抽象类,实现两个关键方法。loadClass:加载指定二进制名称的类,默认使用双亲委派模型。findClass:根据名称查找类,默认为空方法。
Java:JVM基础 方法区是一种设计规范,属于JVM运行时数据区域的一块逻辑区域,是各个线程共享的内存区域,当虚拟机要使用一个类时,它需要读取并解析Class文件获取相关信息,再将信息存入方法区,主要是类信息、字段信息、方法信息、常量、静态变量等。符号引用以一组符号来描述所引用的目标,可以是任何形式的字面量,比如类和接口的全限定名、字段的名称和描述符、方法的名称和描述符等,在编译期或者运行期间生成,不依赖于具体的内存地址,而是在运行时根据上下文信息去定位目标。直接内存是一种特殊的内存缓冲区,通过JNI的方式在本地内存中分配。
量化:概率统计基础 偏度:衡量随机变量分布的左右对称情况,右偏(正偏)指分布右侧出现一个长尾。峰度:峰度越大,尖峰越高,分布的中间区间有更多的数据向均值趋同。将股票收益率看作一个随机变量。如中国平安某段时间涨跌幅分布如下。二阶矩:即方差,反映了数据偏离均值的程度。一阶矩:即均值,在统计学中叫做期望。
量化:多因子模型 多因子策略:使用某种指标或者多种指标对股票池进行筛选,这些用于选股的指标一般被称为因子。多因子模型:使用多个因子综合考虑各因素建立的选股模型,其假设股票收益率能被一组共同因子和个股特异因素所解释。其优点在于能通过有限共同因子来有效筛选数量庞大的个股。横截面数据:横截面指在特定时间点上对多个个体进行观察和测量的数据,横截面分析的目标是研究不同个体之间的差异和关系,寻找在给定时间点上具有较好表现的个体。
量化:Fama-French五因子模型复现 在CAPM模型的基础上加入了两个因子提出了三因子模型,三因子分别为市场因子MKT规模因子SMB(Small Minus Big):可选取市值大小、净资产大小、员工人数等价值因子HML(High Minus Low):选取账面市值比BM规模因子和价值因子的构建如下。规模因子是三个小市值组合的等权平均减去三个大市值组合的等权平均;价值因子是两个高BM组合的等权平均减去两个低BM组合的等权平均。三因子模型的表示如下。E[R_i]:股票 i 的预期收益率R_f:无风险收益率。
系统架构:软件工程速成 定义:采用工程的概念、原理、技术和方法来开发与维护软件。方法:完成软件开发各项任务的技术方法,回答“怎么做”。工具:为运用方法提供的自动或半自动软件工程支撑环境。过程:为了获得高质量软件所需要完成的一系列任务框架,回答“什么时候做”软件生命周期三时期、八阶段。软件定义时期。包括的阶段有:问题定义阶段:用户需要解决什么样的问题。可行性研究阶段:软件开发是否可行。需求分析:明确客户需求,输出标准化的需求说明书。软件开发时期,包括的阶段有:总体设计:设计整体结构、确定综合测试目标。
量化:基于支持向量机的择时策略 机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。机器学习的常见算法包括:决策树、朴素贝叶斯、支持向量机、随机森林、人工神经网络、深度学习等。输入沪深300的行情数据到支持向量机中进行模型训练,预测沪深指数第二天的涨跌。Why SVM?
量化:基于RSRS的市场择时复现 本篇研报考虑阻力位与支撑位之间的相对强度,将其看作一个变量,阻力位与支撑位反映了交易者对目前市场状态顶底的一种预期判断,而强度代表的是这种判断的确定性。如:在下跌熊市中,如果支撑强度明显大于阻力强度,则熊市即将结束,价格见底。传统策略将阻力位与支撑位看作价格区间的阈值,是一个定值,但这种使用策略在等待突破时具有滞后性,在震荡行情中表现不佳。链接:https://pan.baidu.com/s/1EhtoC25WSO7WpNiyZpcKYA。beta为所需斜率,beta值很大时代表支撑强度显著大于阻力强度。
系统架构:软件工程真题知识点 自顶向下设计是指根据给定的问题,递归地将给定问题分析成若干小的基本问题,自下而上是一种相反的设计方法,是指根据已有的组件(基本问题),通过一定的排列组合,最终解决需要解决的问题。从两种方法的定义可以看出自顶向下的设计方法强调的是问题的分解,而自下而上的设计方法强调的是组件(基本问题)复用,所以对于一个相对陌生的问题,采用自顶向下,逐层分解的方法可以更好的得到问题的解,而对于常见问题,则是使用现有的组件可以更快地达到目的。以粗粒度、松散耦合和基于标准的服务为基础,增强了系统的灵活性、可复用性和可演化性。
量化:pandas基础 pandas是 Python 的核心数据分析支持库,提供了快速、灵活、明确的数据结构。pandas主要的两种数据结构为Series和DataFrame,分别用于处理一维和二维数据。
量化:numpy基础 numpy最重要的一个特点是其N维数组对象ndarry,它是一系列同类型数据的集合。使用astype方法改变元素的数据类型。使用条件索引筛选符合条件的元素。设定缺失值nan和检查nan。eye:生成单位矩阵的函数。dtype:元素的数据类型。shape:几行几列。给所有nan元素赋值。重塑为x行x列的数组。
瑞吉外卖:后台系统登录和退出功能 创建实体类Employee,与数据库中的表employee进行映射,直接导入写好的java文件到entity目录。R是一个通用结果类,所有服务器返回的数据都包装为此种类型返回给前端。将res对象的data转json存到localStorage中。如果登录失败,则提取res的msg显示在页面上。点击登录按钮后,浏览器以POST方式向。通过校验后页面登录按钮显示为。如果服务器返回的res对象中。valid是密码位数校验。中开启映射时的命名转换。为1,则表示登录成功,