122. 买卖股票的最佳时机 II

122. 买卖股票的最佳时机 II
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:

输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
     随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 

示例 2:

输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
     注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
     因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。

示例 3:

输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
分析:
根据题意,需要找到所有的买卖股票的时机;所以不难想到可以找出数组中所有的升序列的连续数字,找到这些升序列的最大最小值,计算差值则为最大利润。注意每一个升序列结束的标志是价格下降,所以计算利润的时候,应该是下降前的利润。(示意图如下)
在这里插入图片描述

//122. 买卖股票的最佳时机 II
class Leetcode122 {
    public static void main(String[] args) {
        int[] prices = {7,1,5,3,6,4};
        System.out.println(maxProfit(prices));
    }

    public static int maxProfit(int[] prices) {
        if(prices==null || prices.length<2){    //判空和只有一个元素时
            return 0;
        }
        int minPrices = prices[0];  //将第一个元素赋给最小价格
        int maxPrices = prices[0];  //将第一个元素赋给最大价格
        int maxProfit = 0;      //定义一个最大利润
        int sum=0;          //sum计算利润总和
        for (int i = 1; i < prices.length; i++) {
            if(prices[i]<maxPrices){        //当前价格小于最大价格
                maxProfit=maxPrices-minPrices;      //价格下降,则卖出股票 计算下降之前利润
                sum+=maxProfit;             //计算总和
                minPrices=prices[i];        //更新最小价格
                maxPrices=prices[i];        //更新最大价格
            }else{       //当前价格大于等于最大价格
                maxPrices=prices[i];    //更新最大价格
                if(i==prices.length-1){     //如果当前为最后一个元素
                    sum=sum+(maxPrices-minPrices);  //则卖出股票,计算总利润
                }
            }
        }
        return sum;
    }
}
发布了46 篇原创文章 · 获赞 39 · 访问量 1490
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览