583. 两个字符串的删除操作
给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。
每步 可以删除任意一个字符串中的一个字符。
示例 1:
输入: word1 = “sea”, word2 = “eat”
输出: 2
解释: 第一步将 “sea” 变为 “ea” ,第二步将 "eat "变为 “ea”
示例 2:
输入:word1 = “leetcode”, word2 = “etco”
输出:4
这题可以转化为求解最长公共子序列,使用动态规划算法,比较合适:
int minDistance(char * word1, char * word2){
int n=strlen(word1),m=strlen(word2);
int dp[n+1][m+1];
int i,j;
for(i=0;i<=m;i++){
dp[0][i]=0;
}
for(i=0;i<=n;i++){
dp[i][0]=0;
}
for(i=1;i<=n;i++){
char ch1=word1[i-1];
for(j=1;j<=m;j++){
char ch2=word2[j-1];
if(ch2==ch1){
dp[i][j]=dp[i-1][j-1]+1;
}
else{
if(dp[i-1][j]>dp[i][j-1]){
dp[i][j]=dp[i-1][j];
}
else{
dp[i][j]=dp[i][j-1];
}
}
// printf("%d index %d %d ",dp[i][j],i,j);
}
}
return n-dp[n][m]+m-dp[n][m];
}

这篇博客介绍了如何通过动态规划算法解决给定的两个字符串word1和word2达到相同所需的最小删除步数。以示例为例,解释了如何从'sea'转换到'eat'以及'leetcode'转换到'etco'的过程。动态规划方法通过构建二维dp数组,逐个比较字符并更新步数,最终得到最小编辑距离。

被折叠的 条评论
为什么被折叠?



