小驰驰呕吼**
码龄6年
关注
提问 私信
  • 博客:61,931
    问答:145
    动态:1
    62,077
    总访问量
  • 136
    原创
  • 1,641,654
    排名
  • 49
    粉丝
  • 0
    铁粉

个人简介:热爱计算机的小可爱一枚

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:黑龙江省
  • 加入CSDN时间: 2018-10-02
博客简介:

weixin_43328054的博客

查看详细资料
个人成就
  • 获得59次点赞
  • 内容获得17次评论
  • 获得212次收藏
  • 代码片获得119次分享
创作历程
  • 22篇
    2022年
  • 33篇
    2021年
  • 69篇
    2020年
  • 12篇
    2019年
成就勋章
TA的专栏
  • c++ gdb(lldb)调试
  • 表示学习
    2篇
  • pytorch
    20篇
  • 数据结构与算法
    28篇
  • Python
    17篇
  • JAVA
    3篇
  • 数据库
    1篇
  • python 数据分析
    11篇
  • Android系统学习
    22篇
  • JAVA WEB
    3篇
  • 人工智能 TensorFlow
    7篇
  • PyQt5
    9篇
  • 数据结构
    7篇
兴趣领域 设置
  • 数据结构与算法
    数据结构
  • 移动开发
    kotlinflutterandroid studio
  • 软件工程
    性能优化
  • 学习和成长
    面试
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

180人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

变分自编码器实现(VAE)

import torch from torch import nn class VAE(nn.Module): def __init__(self): super().__init__() self.encoder = nn.Sequential( nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 64), nn.ReLU(),
原创
发布博客 2022.03.16 ·
355 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

自编码器实现(AE)

import torch from torch import nn class AE(nn.Module): def __init__(self): super().__init__() self.encoder = nn.Sequential( nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 64), nn.ReLU(),
原创
发布博客 2022.03.15 ·
465 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

完整的模型验证套路

import torch import torchvision from PIL import Image from torch import nn image_path = "./imgs/dog.jpeg" image = Image.open(image_path) # 图片保留三通道 image = image.convert('RGB') transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32
原创
发布博客 2022.03.01 ·
194 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

使用GPU训练

GPU使用1 import torch import torchvision.datasets from torch.utils.tensorboard import SummaryWriter import time # 准备数据集 from torch import nn from torch.utils.data import DataLoader import nn_seq train_data = torchvision.datasets.CIFAR10(root="../dataset"
原创
发布博客 2022.03.01 ·
314 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

完整的模型训练套路

import torch import torchvision.datasets from torch.utils.tensorboard import SummaryWriter from MyModule import * # 准备数据集 from torch import nn from torch.utils.data import DataLoader import nn_seq train_data = torchvision.datasets.CIFAR10(root="./datas
原创
发布博客 2022.03.01 ·
265 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

网络模型的保存与读取

保存 import torch import torchvision vgg16 = torchvision.models.vgg16(pretrained=False) # 保存方式1 保存模型结构 + 模型参数 torch.save(vgg16, "vgg16_method1.pth") # 保存方式2 保存模型参数(官方推荐) torch.save(vgg16.state_dict(), "vgg16_method2.pth") 加载 import torch import torchvi
原创
发布博客 2022.02.28 ·
185 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

现有网络模型的使用和修改

import torchvision from torch import nn vgg_false = torchvision.models.vgg16(pretrained=False) # 参数使用在别的数据集上训练好的初始化 vgg_true = torchvision.models.vgg16(pretrained=True) # 在现有的网络结构进行一些修改,使它适用于自己的网络结构 train_data = torchvision.datasets.CIFAR10("./dataset",
原创
发布博客 2022.02.28 ·
168 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

优化器的使用

import torch from torch import nn import torchvision from torch.nn import Conv2d, MaxPool2d, ReLU, Linear, Flatten from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter dataset = torchvision.datasets.CIFAR10("./dataset
原创
发布博客 2022.02.28 ·
104 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

损失函数和反向传播

import torch from torch.nn import L1Loss, MSELoss, CrossEntropyLoss inputs = torch.tensor([1, 2, 3], dtype=torch.float32) targets = torch.tensor([1, 2, 5], dtype=torch.float32) inputs = torch.reshape(inputs, (1, 1, 1, 3)) targets = torch.reshape(targets,
原创
发布博客 2022.02.28 ·
123 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

使用Sequential

不使用Sequential import torch from torch import nn import torchvision from torch.nn import Conv2d, MaxPool2d, ReLU, Linear, Flatten from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter class MyModule(nn.Module): de
原创
发布博客 2022.02.28 ·
212 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

神经网络线性层

import torch from torch import nn import torchvision from torch.nn import Conv2d, MaxPool2d, ReLU, Linear from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter dataset = torchvision.datasets.CIFAR10("./dataset", train=
原创
发布博客 2022.02.28 ·
609 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

神经网络非线性激活层

import torch from torch import nn import torchvision from torch.nn import Conv2d, MaxPool2d, ReLU from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter input = torch.tensor([[1, -0.5], [-1, 3]]) in
原创
发布博客 2022.02.27 ·
112 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

最大池化层的使用

import torch from torch import nn import torchvision from torch.nn import Conv2d, MaxPool2d from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter dataset = torchvision.datasets.CIFAR10("../dataset", train=False, transf
原创
发布博客 2022.02.24 ·
134 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

神经网络卷机层

import torch from torch import nn import torchvision from torch.nn import Conv2d from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter dataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvisi
原创
发布博客 2022.02.24 ·
605 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

神经网络基本骨架-nn.Module的使用

import torch from torch import nn class MyModule(nn.Module): def __init__(self) -> None: super().__init__() def forward(self, input): output = input + 1 return output moudle = MyModule() x = torch.tensor(1.0) o
原创
发布博客 2022.02.21 ·
454 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

DataLoader的使用

import torchvision from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter # 准备测试集 test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor()) # batch_size为批量大小(即每次取四张图片
原创
发布博客 2022.02.21 ·
261 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

torchvision数据集的使用

import torchvision from torch.utils.tensorboard import SummaryWriter dataset_transform = torchvision.transforms.Compose([ torchvision.transforms.ToTensor() ]) train_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=dataset_tr
原创
发布博客 2022.02.21 ·
124 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

transform的使用2

from PIL import Image from torchvision import transforms from torch.utils.tensorboard import SummaryWriter img = Image.open("/Users/computer/Documents/Code/pytorchLearning/imgs/five.png") trans_toTensor = transforms.ToTensor() tran_img = trans_toTensor(im
原创
发布博客 2022.02.20 ·
1919 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

transform的使用1

from PIL import Image from torchvision import transforms from torch.utils.tensorboard import SummaryWriter import cv2 writer = SummaryWriter("logs") # 1. transforms如何使用 img_path = "dataset/train/ants/0013035.jpg" img = Image.open(img_path) # 创建对象 tensor
原创
发布博客 2022.02.14 ·
706 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tensorboard使用2

from torch.utils.tensorboard import SummaryWriter from PIL import Image import numpy as np writer = SummaryWriter("logs") img_path = "dataset/train/ants/0013035.jpg" img_PIL = Image.open(img_path) img_array = np.array(img_PIL) print(type(img_array)) # 输出
原创
发布博客 2022.02.14 ·
2045 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多