【数据治理】数据管理体系

1. DAMA 知识体系

DAMA International,国际数据管理协会。是一个全球性的专业组织,成立于 1980 年,一直致力于数据管理和数字化
的研究、实践及相关知识体系的建设。主要包含两部分:DAMA 数据管理知识体系和专业考试认证。
  官网:http://www.dama.org

 DAMA China,国际数据管理协会中国分会。是个非营利性、专注数据管理的专业组织。旨在交流国际、国内在数据管
理领域中的最新进展,共享世界的实践、经验和成果,促进我国数字化水平的不断提高和创新。

DAMA 数据管理知识体系(DMBOK 框架),有车轮图(由数据管理职能领域)和环境因素六边形图(基本环境要
素)构成。其中,数据管理职能包括数据治理、数据架构、数据建模和设计、数据存储和操作、数据安全、数据集成和互
操作、文档和内容管理、参考数据和主数据管理、数据仓库与商务智能、元数据管理、数据质量管理。基本环境要素包括
目标与原则、组织与文化、工具、活动、角色和职责、交付成果、技术。
  可以看出,数据治理的范围很广,包含数据本⾝的管理、数据安全、数据质量、数据成本等。在 DAMA 数据管理知识
体系指南中,数据治理位于数据管理“车轮图”的正中央,是数据架构、数据建模、数据存储、数据安全、数据质量、元数
据管理、主数据管理等 10 大数据管理领域的总纲,为各项数据管理活动提供总体指导策略。

2.数据治理内容

数据治理 
    数据架构 
    数据建模和设计  
    数据存储和操作 
    数据安全 
    数据集成和互操作 
    文件和内容管理 
    参考数据和主数据 
    数据仓库和商务智能 
    元数据 
    数据质量 
 除此之外还有DAMA 金字塔图,则从数据、信息到知识逐层递进,将数据管理知识划分为四个阶段,指导大家分阶段
学习 DAMA 知识体系和开展数据管理工作。

3.数据治理阶段 

第一阶段:首先,数据应用的起点是进行数据建模与设计、数据存储与操作以及数据安全方面的工作。这些步骤确
保系统能够在其数据环境中正常运行,并且能够进行数据集成和交互操作。
第二阶段:其次,要获得高质量的数据,我们需要依靠可靠的元数据和一致的数据架构,使不同系统的数据能够协同
工作。这可以确保数据在各个系统之间的流动无障碍,并且能够被准确地解读和使用。
第三阶段:再次,管理数据质量、元数据和架构需要严格实践数据治理。数据治理提供体系性支持,确保数据管理活
动能够有效进行。此外,数据治理还支持战略计划的实施,包括文档和内容管理、参考数据管理、主数据管理、数据
仓库和商务智能。
第四阶段:最后,在充分管理数据的基础上,我们可以不断提高数据挖掘和分析的能力。通过良好的数据管理实践,
我们能够更好地挖掘数据中的价值并进行深入的分析。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值