docker可用gpu从零搭建过程记录

主要分为两个部分:nvidia/cuda镜像、anaconda安装和环境导入

前提是你已经安装好了docker和nvidia-docker,如果没有安装完成,请在csdn和百度谷歌等地方寻找答案。

1、获取nvidia/cuda镜像

首先通过nvidia-smi命令查看自己物理机的nvidia驱动版本和cuda版本,确认之后,在以下网址中找到对应版本的nvidia/cuda镜像,ubuntu版本随意,我选择了base版,这样可以保证之后自己搭建好环境,commit成自己的镜像时可以更小一些。
nvidia/cuda images
我的是10.1所以使用了

docker pull nvidia/cuda:10.1-base-ubuntu16.04

进行了镜像的拉取

2、生成容器并安装anaconda

以下分享一个我最喜欢的nvidia-docker启动命令,尽可能的覆盖了常用的参数:

nvidia-docker run --name ubuntu_cd -v /home/<username>/workroom:/workspace:cached -v /home/<username>/:/home/<username>/ --cap-add=NET_ADMIN -p 127.0.0.1:2197:2190 --privileged=true --shm-size="2G" -d -it <imageID> /bin/bash

其中我提前将anaconda的安装包下载在了自己映射的目录里,所以在容器中直接到对应位置sh安装即可,您也可以在容器中wget安装包也是一样的。

3、环境导入

(1)如果没有之前常用的环境可以直接自己安装conda环境教程配置。

(2)如果有的话可以通过一下命令进行环境的复制:

首先在原来的工作位置激活自己需要转移的环境:

   conda activate py36

然后通过一下命令导出为yaml文件:

conda env export > enviroment.yaml

最后打开自己的目标机(此处为docker容器),使用以下命令安装环境:

conda env create -f enviroment.yaml
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页