利用Master公式求递归算法的时间复杂度

Master公式是分析分治算法时间复杂度的重要工具,它描述了当递归问题分解成a个子问题,每个子问题规模缩小为n/b时,解决子问题及合并解的时间复杂度。根据d与logba的关系,可以得出不同情况下的时间复杂度:d小于logba时为O(n^(logba)),等于时为O(n^d*logn),大于时为O(n^d)。该公式在算法优化和复杂度分析中有着广泛应用。
摘要由CSDN通过智能技术生成

Master公式

T(n) = aT(n/b) + O(n^d)
  • 参数含义:
Master只适用于子问题规模相同的递归算法
a表示被划分成a个相同规模的子问题
b表示每个子问题处理的数据规模
O(n^d)表示合并子问题解所要花费的时间复杂度
  • 复杂度的计算:
①当d<logb a时,时间复杂度为O(n^(logb a))
②当d=logb a时,时间复杂度为O((n^d)*logn)
③当d>logb a时,时间复杂度为O(n^d)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

it00zyq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值