算法专栏之递归算法那些事

1、利用Master公式求递归算法的时间复杂度

1.1、Master公式

在这里插入图片描述

1.2、参数含义

a表示被划分成a个相同规模的子问题
b表示每个子问题处理的数据规模
O(n^d)表示合并子问题解所要花费的时间复杂度

1.3、适用范围

Master公式只适用于子问题规模相同的递归算法。
什么是子问题规模相同呢?
举个例子及,假定需要从数组中找出最大的数,并且用递归算法实现,可以有以下两种实现:

// 非等区间划分,子问题规模不一致,无法使用Master公式估算时间复杂度
int getMax1(int[] nums, int left, int right) {
    if(left >= right) return nums[left];
    int partitionSize = (right-left)/3;
    // 划分区间,两个子问题规模分别为n/3和2n/3
    int leftMax = getMax1(nums, left, left + partitionSize);
    int rightMax = getMax1(nums, left + partitionSize + 1, right);
    return leftMax > rightMax ? leftMax : rightMax;
}


// 等区间划分,子问题规模都为n/2,可使用Master公司估算时间复杂度
// T(n) = 2×T(n/2) + O(1)
// a = 2, b = 2, c = 0
// 根据Master计算公式可得,时间复杂度为O(N)
int getMax2(int[] nums, int left, int right) {
    if(left >= right) return nums[left];
    int mid = (left+right)/2;
    // 划分区间,两个子问题规模都为n/2
    int leftMax = getMax2(nums, left, mid);
    int rightMax = getMax2(nums, mid + 1, right);
    return leftMax > rightMax ? leftMax : rightMax;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

it00zyq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值