今天我们继续来讲一下Pandas和SQL之间的联用,我们其实也可以在Pandas当中使用SQL语句来筛选数据,通过Pandasql模块来实现该想法,首先我们来安装一下该模块
pip install pandasql
要是你目前正在使用jupyter notebook,也可以这么来下载
!pip install pandasql
导入数据
我们首先导入数据
import pandas as pd
from pandasql import sqldf
df = pd.read_csv("Dummy_Sales_Data_v1.csv", sep=",")
df.head()
output

我们先对导入的数据集做一个初步的探索性分析,
df.info()
output
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9999 entries, 0 to 9998
Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 OrderID 9999 non-null int64
1 Quantity 9999 non-null int64
2 UnitPrice(USD) 9999 non-null int64
3 Status 9999 non-null object
4 OrderDate 9999 non-null object
5 Product_Category 9963 non-null object
6 Sales_Manager 9999 non-null object
7 Shipping_Cost(USD) 9999 non-null int64
8 Delivery_Time(Days) 9948 non-null float64
9 Shipping_Address 9999 non-null object
10 Product_Code 9999 non-null object

本文介绍如何在Python的Pandas库中利用SQL语法进行数据操作,包括导入数据、筛选列、条件筛选、分组、排序、数据合并等步骤,并展示了具体的代码示例。
最低0.47元/天 解锁文章
657

被折叠的 条评论
为什么被折叠?



