香农定理(Shannon's Theorem)是信息论中的一个重要定理,描述了在有噪声的信道中,传输信息的最大速率,即信道容量。
香农定理回顾
香农定理的信道容量公式为:
其中:
- C是信道容量(比特/秒),
- B是带宽(Hz),
- S/N是信噪比(SNR)。
比特级信噪比的定义
比特级信噪比(Eb/N0)是指每比特能量与噪声功率谱密度的比值,其公式为:
其中:
• 𝐸𝑏 是每比特能量,
• 𝑁0 是噪声功率谱密度(𝑁0=𝑁/𝐵)。
推导比特级信噪比极限
根据香农定理,信道容量 C可以表示为:
将S/N用Eb/N0表示:
将其代入香农定理公式:
两边同时除以B:
令 C/B=R(频谱效率,单位为比特/秒/Hz),则:
化简后得到:
当 𝑅→0(即频谱效率趋近于 0)时,可以近似为:
MATLAB仿真
% 定义 R 范围(频谱效率dB) R=0:0.001:10; ebno=(2.^R-1)./R; %信噪比转换为dB ebno_db=10*log10(ebno); % 绘图 figure; plot(R,ebno_db,'LineWidth', 2, 'DisplayName', 'Shannon Capacity'); hold on; ylabel('$E_b/N_0$ (dB)', 'Interpreter', 'latex'); xlabel('Spectrum Efficiency $R$ (bits/s/Hz)', 'Interpreter', 'latex'); title('Shannon Theorem and Eb/N0 Limit'); grid on; legend show; hold off;
运行结果
从运行结果可以看出,在频谱效率0附近,信噪比为-1.56dB。
当然,我们也可以用matlab求极限的函数直接求出香农定理极限。
clear; syms R; ebno=(2.^R-1)./R; %求香农定理极限 ebno_li=limit(ebno,R,0); %转换dB li_db=double(10*log10(ebno_li)); disp('香农定理极限:'); X = sprintf('%2f dB',li_db); disp(X)
运行结果:
最后
关注我,学习更多通信知识。