Tensorboard学习六之Tensorboard的实现

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
x_data = np.linspace(-1,1,300)[:,np.newaxis]
print(x_data.shape)
noise = np.random.normal(0,0.05,x_data.shape)
y_data = np.square(x_data) -0.5 + noise

def add_layer(input,in_size,out_size,activation_function=None):
    with tf.name_scope('layer'):
        with tf.name_scope('weights'):
            Weights = tf.Variable(tf.random_normal([in_size,out_size]),name='w')
        with tf.name_scope('biases'):
            biases = tf.Variable(tf.zeros([1,out_size]) + 0.1,name='b')
        with tf.name_scope('Wx_plus_b'):
            Wx_plus_b = tf.matmul(input,Weights) + biases
        if activation_function is None:
            outputs = Wx_plus_b
        else:
             outputs = activation_function(Wx_plus_b)
        return outputs
with tf.name_scope("inputs"):
    xs = tf.placeholder(tf.float32,[None,1],name = "x_input")
    ys = tf.placeholder(tf.float32,[None,1],name = "y_input")

l1 = add_layer(xs,1,10,activation_function=tf.nn.relu)
prediction = add_layer(l1,10,1,activation_function=None)
with tf.name_scope("loss"):
    loss =tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
with tf.name_scope("train"):
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.initialize_all_variables()
sess = tf.Session()
writer = tf.summary.FileWriter("logs/",sess.graph)
sess.run(init)
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data,y_data)
plt.ion()#可以连续plot
plt.show()
for i in range(1000):
    sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
    if i% 50  == 0  :
        # print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
        try:
            ax.lines.remove(lines[0])
        except Exception:
            pass
        prediction_valu = sess.run(prediction,feed_dict={xs:x_data,ys:y_data})
        lines = plt.plot(x_data,prediction_valu,'r-',lw = 5)
        plt.show()
        plt.pause(0.1)

运行以上代码会生成文件在默认目录下,打开文件的方式:
cmd进行文件目录
在这里插入图片描述
当上面一个代码运行出来的网址在浏览器中打不开时,换成下面一个,将网址输入浏览器得到可视化图
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值