机器人地面站-[QGroundControl源码解析]-[9]-[Camera] 本篇介绍Camera文件夹下的内容,该文件夹下又三个类文件,分别是QGCCameraManager,QGCCameraIO,QGCCameraControl
机器人地面站-[QGroundControl源码解析]-[8]-[Audio] 本篇主要讲解了Audio目录下的两个类。第一个类是功能类,主要用于将语音文本转为语音,进行应用数据的实时播报。第二个类是测试类
机器人地面站-[QGroundControl源码解析]-[6]-[AnalysizeView2] 本篇讲解了AnalyzeView页面下mavlink相关操作的两个类,分别处理了mavlink消息的管理,和mavlink控制台的逻辑处理
机器人地面站-[QGroundControl源码解析]-[3]-[ADSB] 项目中要使用QGC,还要做一些更改,感觉Qgc源码很多,又是一个开源项目,对于qt开发项目经验不足的我们来说实在是一个不可多得学习资料,所以决定花一些时间对源码进行注释和解读,这样也能更好的利用到项目中去。
机器人地面站-[QGroundControl源码解析]-[2] 项目中要使用QGC,还要做一些更改,感觉Qgc源码很多,又是一个开源项目,对于qt开发项目经验不足的我们来说实在是一个不可多得学习资料,所以决定花一些时间对源码进行注释和解读
机器人地面站-[QGroundControl源码解析]-[1] 项目中要使用QGC,还要做一些更改,感觉Qgc源码很多,又是一个开源项目,对于qt开发项目经验不足的我们来说实在是一个不可多得学习资料,所以决定花一些时间对源码进行注释和解读,这样也能更好的利用到项目中去。
项目偶遇-[算法]-[向上或向下求一个数最近的2的整数次幂] 此算法在项目中需要,所以在网上找了一下,发现向上求解的很多,自己修改了一下徐诶了一个向下求解的,但是没有经过很多数的测试,有问题可以提出来。
我与计算机视觉-[CUDA]-[CPU多线程下CUDA的多流] 首先问题出在cpu下的多线程,当你想要在多个线程下调用同一个cuda核函数的时候,你会发现效率很低,那么经过验证,的确,不管你有多少个线程,cuda总是将线程中的核函数放入默认流中进行队列方式的处理,相当于单线程,但是这个问题在cuda7后已经得到了解决,下面对这个问题进行一些测试。这里使用了以下链接中的内容:https://www.cnblogs.com/wujianming-110117/p/14091897.htmlhttps://developer.nvidia.com/blog/gpu
我与计算机视觉-[CUDA]-[Opencv.Resize的CPU实现和GPU实现] 首先原理和cpu的实现我这里就不赘述了,大家可以移步此篇文章,讲的很详细,并且gpu的代码也是按照这篇的思路去做的,链接:图像处理之双线性插值法。下面直接贴代码:CPU端实现:void Resize(cv::Mat matDst1, cv::Mat matSrc) { uchar* dataDst = matDst1.data; int stepDst = matDst1.step; uchar* dataSrc = matSrc.data; int stepSrc = matSrc.
我与边缘计算 - [Jetson Xavier] - [浪潮边缘主机环境拓荒] 目的目的是使用边缘主机运行yolov4.过程我使用的这款机器说明书名称为NE1008N1边缘智算小站,我就叫他边缘主机了,因为搭载的是英伟达的JetsonNano后边简称jn,所以去网上查资料准备安装环境,网上说jn拿到的时候一般已经安装好cuda,opencv等深度学习环境,但是我找了一圈没找到,可能是浪潮那边弄掉了吧。所以这种情况下只能自己搭建环境,这里记录一下过程,以便自己后边迁移。1.opencv这里使用的是opencv3.3.1版本,github下载后使用mv命令移动到 /u.
我与计算机视觉 - [Today is yolo] - [记一次使用c++训练yolo模型的经历] 1.准备darknet源码目录结构如下:在darknet-master\build\darknet\x64新建cfg文件,可以直接复制yolov3.cfg,然后重命名为你的名字.cfg,然后修改这个文件中的一些内容:将batch 改成64 :batch=64将subdivisions 改成8 :subdivisions=8将每个yolo下(共有3处)的classes改成你自己的类的数量 :classes = 1(我的是1类)将每个yolo上面第一个convolutiona..