rosrun找不到功能包 如何解决无法找到rosrun功能包的问题今天rosrun突然找不到自己的功能包,但是功能包所在的工作空间已经写进bashrc(第二行),原来一直是没问题,没动过自己的工作空间,只是安装了一些东西.下面是我的bashrc解决方法:将工作空间的路径调到最后再输入source ~/.bashrc即可具体原因不太清楚,如果出现这个问题可以试试这种方法...
Ubuntu16控制robotiq_2f_140机械爪 Ubuntu16控制robotiq_2f_140机械爪环境配置Ubuntu16.04 amd64Ros Kinectrobotiq_2f_140机械爪创建工作空间mkdir -p robotiq_ws/srccd robotiq/srccatkin_init_workspacecd ..catkin_makeecho "source ~/robotiq_ws/devel/setup.bash"下载源码
Ubuntu16使用python3编译cv_bridge Ubuntu16使用python3编译cv_bridge系统配置创建工作空间下载cv_bridge源码修改CMakeList.txt可能遇到的错误1可能遇到的错误2参考系统配置Ubuntu16.04 arm64ROS Kinect系统自带Python和Python3.5创建工作空间mkdir -p catkin_ws/srccd catkin_ws/srccatkin_init_workspacecd ..catkin_makeecho "source ~/catkin_ws/d
DEEPLIZARD强化学习3----策略和价值函数 本系列是依据DEEPLIZARD强化学习课程来的,属于对该课程的一些记录和翻译,有能力的话建议阅读原文,翻译成中文就没有那种味道了。课程的地址为:DEEPLIZARD强化学习课程B站上的视频地址该博客的原地址目录策略Police价值方程Value Functions状态价值函数State-Value Function行为价值函数Action-Value Function策略Police策略是将给定state映射为从该state中选择每个可能action的概率的函数,用π\piπ表示。如果age
DEEPLIZARD强化学习2----预期收益Expected Return 本系列是依据DEEPLIZARD强化学习课程来的,属于对该课程的一些记录和翻译,有能力的话建议阅读原文,翻译成中文就没有那种味道了。课程的地址为:DEEPLIZARD强化学习课程B站上的视频地址该博客的原地址目录预期收益Expected ReturnEpisodic Vs. Continuing Tasks折扣预期收益Discounted Return预期收益Expected Return在上一节我们说到,MDP中agent的目标是使累计奖励(cumulative rewards)最大化,我们
DEEPLIZARD强化学习1----马尔可夫决策过程MDP 本系列是依据DEEPLIZARD强化学习课程来的,属于对该课程的一些记录和翻译,课程的地址为:DEEPLIZARD强化学习课程B站上的视频地址目录MDP的组成MDP的符号功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入M
声纹识别概述 声纹识别-1.绪论 前言 指纹信息、人脸信息和声纹(voice-print)信息作为人体固有的生物信息,是智能电子设备私有化部署及辅助辨认个体的媒介。目前,指纹和(3D)人脸作为智能电子设备解锁信息已经成功商用,典型的如智能手机、人脸打卡系统等。声纹因为其变化性较前两者强,如感冒...
[语音分离论文小记] Dual-Path Transformer Network 作者:Jingjing Chen, Qirong Mao, Dong LiuJingjing Chen, Qirong Mao, Dong Liu发表于 INTERSPEECH 2020网上的笔记 asteroid源码 官方源码双路径transformer、端到端、时域、直接上下文感知值得一读的论文i Luo, Zhuo Chen, and Takuya Yoshioka, “Dual-path rnn: efficient long sequence modeling for time-do
[语音分离论文小记]Dual-Path RNN (DPRNN) 作者 Yi Luo, Zhuo Chen, Takuya Yoshioka发表于 ICASSP 2020源码 网上的阅读笔记1 网上的阅读笔记2DPRNN、时域、长语音序列研究发现基于时域的分离方法要比基于时频域的分离方法要好,但是与时频域方法相比,时域方法在对长语音序列方面有困难。本文提出了DRPNN对RNN进行优化使其可以对长语音序列进行建模,DPRNN将长语音序列分割成更小的块,并迭代地应用块内和块间操作,其中在每次操作中,输入长度可以与原始序列长度的平方根成正比。Introdu
[语音分离论文小记]Sandglasset: A Light Multi-Granularity Self-Attentive Network for Time-Domain Speech Separ 作者:Max W. Y. Lam, Jun Wang, Dan Su, Dong Yu发表于 ICASSP 2021沙漏网络、轻型网络、自注意力、时域、多粒度值得一读的论文Yi Luo, Zhuo Chen, and Takuya Yoshioka, “Dual-path rnn: efficient long sequence modeling for time-domain single- channel speech separation,” arXiv preprint arXiv:19
[语音分离]端到端声源分离研究:现状、进展和未来 本文是由罗艺老师主讲的『端到端声源分离研究进展』f分享整理而来。内容主要覆盖了单通道和多通道上端到端音源分离的现状和进展以及未来的研究方向。文末有彩蛋,评论可获取课程学习资料~ 端到端音源分离定义与进展 什么是端到端音源分离呢?罗艺老师首先介绍了端到端音源分离的定义。从名称来看,端到端的含义是模型输入源波形后直接输出目标波形,不需要进行傅里叶变换将时域信号转换至频域;音源分离的含义是将混合语音中的两个或多个声...
[语音分离论文小记] Attention is all you need in speech separation 作者:Cem Subakan, Mirco Ravanelli, Samuele Cornell, Mirko Bronzi, Jianyuan Zhong发表于 ICASSP2021源码 论文地址值得一读的论文Y. Luo, Z. Chen, and T. Yoshioka, “Dual-path rnn: efficient long sequence modeling for time-domain single-channel speech separation,” in Proc. o
【深度学习】从self-attention到transformer(Multi-head self-attention) 简介今天讲以self-attention为基础讲解它的升级版 Muti-head self-attention,不了解self-attention的童鞋可以戳这里【深度学习】从self-attention到transform(self-attention入坑指南) 废话不说,正式开始。为什么要使用Multi-head self-attention?单纯从字面意思看,Multi-head self-attention比self-attention多了Multi-head,它的意思为多头。可以理解为多种
【深度学习】从self-attention到transform(self-attention入坑指南) 简介该教程主要参考的是台大李宏毅的网课视频,附上视频链接:台大李宏毅self-attention教程文中图片均引自台大李宏毅的PPT,需要PPT的童鞋请戳这里:教程配套PPT本文针对视频中的一些重点进行总结,看不懂的童鞋还请去看原视频,毕竟李宏毅yyds!!背景什么的就不再介绍了,网上一搜一大堆,不知道背景的童鞋可以先去度娘问一下。转载请注明出处。正文开始self-attention主要是针对seq2seq的,根据输入和输出的向量长度的不同可以分为三种情况:输入和输出长度相同,也就是说输入