在相对完善的指标体系建设背景下,我们需要通过指标以及指标波动的解读来描述、追踪、推动业务。当一个指标波动时,我们首先需要从业务视角判断其波动是否异常,即异动检测,其次判断异常背后的原因是什么,即异动归因。指标拆解是常用的归因方法。指标拆解首要做的就是找到各种拆解方法的贡献度。
加法拆解

针对绝对值指标的维度拆解都是加法拆解。绝对量指标的同比/环比变化,就是各个分指标变化的加权求和,例如访问uv总和等于各渠道uv加总, 那么总uv的变化下钻贡献率等于各渠道分别的变化除以上个月的总uv数。或者我们能从分指标的趋势图直观发现与总体指标变化趋势相似的局部就是关键因素。
乘法拆解

举例,GMV=下单人数*人均客单价,两边同时取对数ln,即可得到加法形式,然后再按照类似方法得到各因子的贡献度。所以最终就是比较哪个因子的前后比率大,贡献度就大。

在业务分析中,当指标出现波动时,需要进行异动检测和归因分析。文章介绍了加法拆解、乘法拆解和比率型指标拆解三种方法来定位影响因素。加法拆解关注各维度的绝对值贡献;乘法拆解通过转换为对数形式找出关键因子;比率型指标拆解则分析比率变化和结构变化,以确定问题源头。
最低0.47元/天 解锁文章
676

被折叠的 条评论
为什么被折叠?



