奶糖猫Esong
码龄6年
关注
提问 私信
  • 博客:172,967
    社区:772
    173,739
    总访问量
  • 50
    原创
  • 1,095,910
    排名
  • 370
    粉丝
  • 3
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2018-10-16
博客简介:

weixin_43434202的博客

查看详细资料
个人成就
  • 获得645次点赞
  • 内容获得192次评论
  • 获得2,776次收藏
  • 代码片获得3,045次分享
创作历程
  • 43篇
    2020年
  • 7篇
    2019年
成就勋章
TA的专栏
  • 数据分析与爬虫
    11篇
  • 机器学习
    23篇
  • 算法
    7篇
  • Tips
    1篇
  • Python基础
    5篇
  • Flask
    1篇
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

183人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

总结 | DataFrame、Series、array、tensor的创建及相互转化

最近在入门图像识别,自然也会用到深度学习框架,也接触到了一个新的数据结构——tensor(张量)。除此之外,也有一些很常用的数据结构,比如DataFrame、Series、array等,这篇文章主要对这几种数据结构的创建及相互转换做一个小总结。创建方法DataFrame这里就不在单独贴出每种数据结构的示例图,只是简单描述一下各个数据结构的特点。DataFrame类似于一个二维矩阵,但它的行列都有对应的索引。DataFrame创建方法很多,这里给出比较常用的三种方法:1、通过字典创建2、通过元组
原创
发布博客 2020.08.25 ·
4758 阅读 ·
4 点赞 ·
0 评论 ·
46 收藏

这是一份 pip 常用命令小结~

pip 这个工具我们经常会用到,毕竟 python 是一门以第三方库庞大而著名的编程语言,所以我们总会用 pip 安装一些依赖库,当然这只是 pip 最常用的一个命令,下面就来介绍一下 pip 中你需要掌握的一些命令。我个人用的是Anaconda,所以需要在Anaconda Prompt中操作,如果你用的是官网下载的 python 版本,就可以直接在cmd中操作。pip直接输入 pip 可以查看所有的命令参数以及可选项:查看pip所在位置:where pip更新pip的版本:pip i
原创
发布博客 2020.08.23 ·
508 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

Flask从零到一 2 | flask相关参数配置

上一篇文章介绍了学习flask之前需要的准备工作,也就是Git工具的下载和虚拟环境的配置,还介绍了如何编写一个最简单的flask程序,还捎带讲了一下有关于静态目录和模板目录的知识,这篇文章会深入讲解一下flask一些参数的配置。app初始化参数上一篇文章我们提及过在当前模块的根目录下会默认存在一个static,当然这是我们不在网页加任何修饰的情况。但如果我们需要将一些静态文件展示到网页中,我们就需要创建一个static文件夹来保存这些静态文件,它应该与当前模块处于同级目录。之前我们通过访问绑定的url
原创
发布博客 2020.08.14 ·
488 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python制作图片验证码?也就三行代码罢了

现在验证码的种类真的是越来越多,短信验证码、语音验证码、图片验证码、滑块验证码 … 我们在 PC 的网页端或者手机上的 app 进行登录或者注册时,应该总会遇见图片验证码,比如下面这类:上面这些图片验证码都是通过Python制作出来的,方法有很多,但主要都是依赖Python强大的第三方库,下面就介绍一下制作图片验证码的三种方法,难度由高到低。Pillow库Pillow是一个非常强大的图片处理模块,其中Image是Pillow中最为重要的类,实现了Pillow中大部分的功能,这个类的主要用来表示图片对
原创
发布博客 2020.08.11 ·
3231 阅读 ·
12 点赞 ·
0 评论 ·
39 收藏

Python之错误和异常、模块(基础系列第四篇)

系列第四篇主要讲两方面,错误和异常以及模块。在编程时遇见错误信息在所难免,Python中会也有很多种错误信息,常见的两种就是语法错误和异常,这两个是完全不同的概念,下面就开始介绍一下这两个概念的相关知识。错误和异常语法错误语法错误英文表示为SyntaxError,后面会跟着一些关于错误的解释信息,方便你查找语句中的bug,如下:In [5]: print('naitangmao) File "<ipython-input-5-d5b793a8884b>", line 1 pr
原创
发布博客 2020.08.10 ·
437 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

Flask从零到一 1 | 虚拟环境和第一个flask程序

大约还有二十天假期时间,这二十天我准备跟进一个Flask入门系列,大致会分为10-12篇文章。虽然我以后不想做开发,但是Web开发热度还是挺高的,所以就用了一段时间学习了一下,下学期也会有与Web有关的课程,如果对Flask感兴趣的话,可以持续跟进,希望这个系列可以帮到伙伴们。第一篇主要包括两个方面,一方面是学习Flask之前的准备工作,比如配置相应的环境以及下载一些工具;另一方面就是编写第一个Flask简易程序。Flask是支持Python2 和 Python3两个版本的,但是在我接触Python的时
原创
发布博客 2020.08.06 ·
402 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

全!Python函数和文件操作合集(长文系列第三篇)

系列第三篇来说一下函数和文件。函数在编程中是一个很重要的角色,我们可以将若干个语句组合形成一个函数,它可以接受传入参数,并在内部进行相关计算后产生输出,将语句封装成函数是为了避免重复使用几个语句造成代码冗杂,让代码更简洁可观性更强。文件的操作主要是介绍一些关于文件的读取及写入的方法,以及每个方法的不同点和需要注意的事项,最后会介绍一下利用pickle模块存储复杂数据的方式。函数函数主要包括两个方面:内置函数自定义函数内置函数就是python自带的一些函数,我们只需要给函数传入相关参数就可以进
原创
发布博客 2020.08.05 ·
381 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

Python的循环、判断和各种表达式(长文系列第二篇)

流程控制是python语法很重要的一个分支,主要包括我们经常用到的判断语句、循环语句以及各种表达式,这也是上一篇文章没有介绍表达式的原因,在这篇文章中会更加系统全面的讲解这三方面的基础知识。判断语句(if)判断语句中最有名的应该就是if-else的组合,并且很多语言都通用这种格式,但是对于elif而言,不同语言表达形式可能会不同:In [1]: x = 5In [2]: if x>0: ...: print('正整数') ...: elif x<0: ...:
原创
发布博客 2020.08.04 ·
529 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

干货!Python常用数据类型的基本操作(长文系列第一篇)

Python基础系列会将基础内容大致分为四到五个板块,每篇文章着重讲一方面,知识不会很难,主要是以小例子的形式解读,如果你已经入门Python,希望可以帮你温习一下;如果你想入门Python,希望可以帮你越过这个门槛。Python原生数据类型主要有Number、String、Byte、Boolean、None、List、Tuple、Set、Dict这九种,这篇文章主要讲一下字符串、列表、元祖、集合、字典这五种,剩下的四种大家可以自己了解一下。字符串初始化一个字符串,方便后面在字符串上做一些操作。In
原创
发布博客 2020.07.31 ·
296 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

干!一张图整理了 Python 所有内置异常

在编写程序时,可能会经常报出一些异常,很大一方面原因是自己的疏忽大意导致程序给出错误信息,另一方面是因为有些异常是程序运行时不可避免的,比如在爬虫时可能有几个网页的结构不一致,这时两种结构的网页用同一套代码就会出错,所以我们就需要捕获出现的异常,以防止程序因为错误信息而终止运行。Python有很多的内置异常,也就是说Python开发者提前考虑到了用户编程过程中可能会出现这类错误,所以制造了这些内置异常可以快速准确向用户反馈出错信息帮助找出代码中的bug。Python官方文档中也给出了所有内置异常及触发条
原创
发布博客 2020.07.29 ·
1911 阅读 ·
8 点赞 ·
2 评论 ·
27 收藏

Tips | 如何用二元分类器解决一个多分类任务?

二元分问题会是我们生活中比较常见的一类问题,比如邮件可以分为垃圾邮件和非垃圾邮件、一个人患病或者不患病,但除此之外也会遇到一些多元分类问题,比如天气可以分为晴、阴、雨、雪等等。我们通过算法构建的分类器就以分为二元分类器和多元分类器,前者可以区分两个类别标签,后者则可以区分两个以上的类别标签。对于算法而言,像SVM、逻辑回归等是严格的二元分类算法,而像朴素贝叶斯、随机森林这类算法则可以直接处理多元分类问题。但利用二元分类器处理多分类问题是可行的,下面将以逻辑回归结合鸢尾花数据集为例介绍。OvA、OvO策略
原创
发布博客 2020.07.24 ·
2239 阅读 ·
2 点赞 ·
0 评论 ·
22 收藏

实战 |利用机器学习实现一个多分类任务

对于机器学习而言,如果你已经大致了解了相关算法的原理、理论推导,你也不是大家口中刚入门的小白了。接下来你需要将自己所学的知识利用起来,最好的方式应该就是独立完成几个项目实战,项目难度入门级即可,因为重点是帮助你了解一个项目的流程,比如缺失值和异常值的处理、特征降维、变量转换等等。Kaggle毋庸置疑是一个很好的平台,里面的泰坦尼克号、房屋价格预测、手写数字都是非常非常经典的入门实战项目,如果你独立完成这三个项目后感觉可以提升一下难度,就可以继续在Playground中寻找适合自己的项目。但如果你感觉还需要
原创
发布博客 2020.07.17 ·
2766 阅读 ·
4 点赞 ·
0 评论 ·
33 收藏

数据库课程设计:Oracle+Java实现酒店管理系统(c/s结构)

发布资源 2020.07.16 ·
rar

二分查找及对应的几道经典题目

二分查找(Binary Search)属于七大查找算法之一,又称折半查找,它的名字很好的体现出了它的基本思想,二分查找主要是针对的是有序存储的数据集合。假设有一个集合和一个待查找的目标值,每次都通过将目标值和处于集合中间位置的元素比较,将待查找区间收缩为之前区间的一半,比如目标值小于一次二分查找区间的中间值,则下次查找区间就为原区间的左边一半,重复此过程直至找到目标值或者区间被收缩为0.下面这幅动图就为二分查找的基本过程,也是最简单的一种二分查找。最开始我们总是维护两个指针,分别指向数组的起始位置和
原创
发布博客 2020.07.02 ·
1490 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

安利十二个常用的IPython魔法命令

不能以偏概全哈,就我个人而言,在日常编程中一般都会用到两个编译器——Pycharm和Jupyter,在刷算法、写爬虫时会用到前者,因为我习惯用Pycharm里的Debug功能调试,很容易找出代码中的Bug。而进行数据分析、机器学习时就会用到后者,因为Jupyter编译器利用的IPython是一种交互式计算和开发环境,对数据的可视化十分友好,这类单元格的形式每一步都有运行结果,便于整理自己思路,并且很大程度上节约了运行时间,在调试的时候只需要运行出错的部分代码,而不是全部。IPython中有一些特有的魔法
原创
发布博客 2020.06.30 ·
955 阅读 ·
2 点赞 ·
0 评论 ·
9 收藏

Python数据分析——《隐秘的角落》开播之后就没下过热搜?

不会吧、不会吧,不会还有朋友没看《隐秘的角落》吧,如果没有断网的话,最近朋友圈、微博等都应该被这部只有十二集的国产网剧刷屏了。开播初豆瓣评分就已经达到9.0,甚至一度窜到9.2,要知道国产电视剧过9分的都寥寥无几,更何况还只是一部网剧,可能绝大部分人与这部剧本无缘,但是选择看剧的契机也正是这超高的评分。经过朋友圈和微博的强烈安利,又在高评分的诱惑下,和家人一天刷完了这部神剧,看完这部剧主要有两个感受:全员演技都在线细~真的细、细到爆炸平时看电视剧不多,国产剧就更少了,最大的一个感受就是有些演技真
原创
发布博客 2020.06.28 ·
16515 阅读 ·
81 点赞 ·
42 评论 ·
185 收藏

一文凑齐四种变量转换方法!

在一份数据集中通常会遇见两类数据——数值型与类别型,数值型变量通常就是int、float类型,类别型变量就是object类型,也就是我们总说的字符型变量。如果更官方地讲,数值型变量被称作定量变量、类别型变量被称作定性变量。数值型变量主要体现在连续值和离散值:连续值:体温、房屋面积等离散值:人数、个数等我们都知道在大多数机器学习算法中都要与"距离"多多少少都会有些关系,所以只允许传入数值型变量,在不需要做其它处理的前提下,原始数据集中的数值型变量都是可以直接使用的,典型的算法代表有支持向量机、逻辑
原创
发布博客 2020.06.26 ·
3849 阅读 ·
1 点赞 ·
0 评论 ·
9 收藏

Kaggle竞赛入门实战——机器学习预测房屋价格

这篇文章是介绍一个完整的机器学习小项目——预测房屋价格,它是Kaggle竞赛中入门级的题目,和我们比较熟悉的泰坦尼克号生存预测处于同一等级。在之前介绍KNN算法时,曾用过这个数据集,但只是通过简单的建模帮助理解KNN的思想,本文会更加全面地介绍完成一个小项目的流程,如何在科学分析的辅助下预测出我们需要的目标值。在分析之前我们应该提前明确我们的目的,中途可能需要处理的问题,可以归纳成以下几点:了解标签变量:可以通过目标变量大致分析出解决问题是需要分类算法还是回归算法。粗略了解特征:因为特征标签都为英文
原创
发布博客 2020.06.22 ·
1216 阅读 ·
1 点赞 ·
0 评论 ·
12 收藏

不能不用也不可乱用的标准化和归一化处理

今天这篇还是讲特征工程那一堆事,准确点说是数据预处理范畴内的,在做PCA降维时,我发现利用方差过滤出的主成分和利用PCA降维得到的主成分对应位置的方差有些不同:VarianceThreshold:[90370.21684180899, 55277.04960170764, 51395.858083599174]PCA:[176251.93379431,74196.48270488,55716.27982124]之前说过PCA降维可以将原来高维的数据投影到某个低维的空间上并使得其方差尽量大。如果数据其
原创
发布博客 2020.06.15 ·
4156 阅读 ·
9 点赞 ·
0 评论 ·
40 收藏

20年前的几行代码竟如此牛逼?惊了

最近在知乎上看到了一个话题:世界上有哪些代码量很少,但很牛逼很经典的算法或项目案例?其中有一个回答是雷神之锤3中的快速逆平方根算法,我本以为是电影中雷神3中出现的代码,就特别好奇点进去看了一下,结果真是对应了代码注释中的一句话“what the fuck?”。越不会越好奇,查过之后才知道这是一款游戏中的部分代码,1999年发布,2005年开源,距离现在已经有20年了,据说这部分代码出现在公共场合时,几乎震住了所有人,也就是下面这几行代码:float Q_rsqrt( float number ){
原创
发布博客 2020.06.08 ·
29620 阅读 ·
183 点赞 ·
78 评论 ·
791 收藏
加载更多