图像标注工具labelImg安装-及错误启动解决

一、基本环境:win10 +python3.6

二、下载源码

Github下载地址https://github.com/tzutalin/labelImg

点击Clone or download——选择Download ZIP,下载完成放到安装路径下并后解压。

三、下载安装所需依赖库

需要安装lxml、PyQt5、PyQt5_tools:

在CMD命令窗口中输入:

pip install lxml -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install PyQt5 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install PyQt5_tools -i https://pypi.tuna.tsinghua.edu.cn/simple

如有报错,请自行查阅解决办法。

四、运行

打开labelImg安装路径按住shift键后鼠标右击,选择 在此处打开 Powershell 窗口 。

 在PowerShell 窗口中输入 

python labelImg.py

 即可启动。

如有报错:请在此窗口执行

Pyrcc5 -o resources.py resources.qrc

将原来的resources.qrc文件转换成resources.py文件。

以后即可使用

python labelImg.py

启动labelimage

 

LabelImg是一款开源的图像标注工具,常用于制作用于训练深度学习模型的数据集。以下是使用LabelImg的基本步骤: 1. **安装LabelImg**:首先从GitHub下载最新版本的LabelImg,支持Windows、Mac和Linux系统。对于Windows用户,推荐安装PyQt版,因为它包含了Python解释器。 2. **启动工具**:双击下载好的安装文件打开LabelImg,它通常会自动生成一个空白的图片编辑窗口。 3. **导入图片**:点击左上角的“Load Images”按钮,选择你要标注的图片文件,或者直接拖拽图片到LabelImg的主窗口。 4. **开始标注**:在图片上点击并拖动鼠标来画矩形框表示物体的位置,右键单击可以在弹出菜单中输入对象的标签(class name)。如果需要调整标注,可以直接在已经标注的框上修改。 5. **标注属性**:对于更复杂的对象,LabelImg允许添加额外的属性,比如物体的颜色、尺寸等。点击对应的选项添加属性,并填写其值。 6. **保存标注**:完成标注后,选择“Save as CSV”或者“Save as XML”,选择相应的格式保存你的标注数据,通常是`.txt`或`.xml`格式。 7. **检查和校对**:反复检查标注是否准确无误,如有错误可随时修改。LabelImg也提供了预览功能,帮助你查看标注的效果。 8. **批量处理**:如果你有大量的图片需要标注LabelImg支持批量导入和处理,只需指定文件夹路径即可。 9. **数据集管理**:对于大型项目,可能需要配合其他工具或脚本管理整个数据集,LabelImg本身并不包含这一步骤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值