这里只记录一些看完1-4课后,被解决的困惑们。
一、为什么使用GAN
GAN有生成器G和判别器D。
能不能只用生成器?
可以,但是需要的网络更大更深。
能不能只用判别器?
可以,但最终生成的结果可能会很模糊。

二、条件GAN
比如有一些文本描述,辅助生成图像。
三、数学理论
需要注意的一些小细节。
-
G就是为了让生成数据的分布和真实数据分布是一致的,例如真实数据是一些图像,世界上所有的图像组成一个高维的空间,真实的图像只占其中一部分,我们假设它们是满足某个分布PdataP_{data}Pdata的,所以我们希望生成的数据也服从这个分布(同mean,同var)。
转化为优化问题,其实G是为了最小化一个真实数据分布和生成数据的分布之间的度量。
后来经过证明maxDV(G,D)max_D V(G,D)maxDV(G,D)可以看作JS散度,去度量上述两个分布。
所以,G∗=arg minGmaxDV(G,D)G^*=\argmin_G \max_D V(G,D)G

本文探讨了GAN的工作原理,包括为何需要生成器和判别器配合、条件GAN如何利用文本描述引导生成、数学理论中的JS散度和优化策略,以及为何目标是寻找分布一致而非其他。
最低0.47元/天 解锁文章
499

被折叠的 条评论
为什么被折叠?



