月月查华华的手机 //序列自动机

题目链接

牛客小白月赛12-J

题意

给定一个母串 s s s ,有 m m m 次询问,每次询问给一个字符串 t t t ,问这个字符串是否为母串的子序列。是则输出"Yes",否则输出"No"。

思路

序列自动机入门题.
设母串长为 n n n 、子串长为 m m m ,定义 n e x [ i ] [ j ] nex[i][j] nex[i][j] 表示在母串 s s s i i i 位后面(不包括第 i i i 位)的第一个 j j j 出现的位置,匹配的时候从第零位(虚根)开始,如果能一直匹配下去就输出 Y e s Yes Yes,否则输出 N o No No。预处理时间复杂度为: O ( n ∗ 26 ) O(n*26) O(n26),单次查询时间复杂度为 O ( m ) O(m) O(m)

参考代码

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
typedef pair<int,int> P;
const int maxn=1e6+10;
const int inf=0x3f3f3f3f;
const int mod=1e9+7;
#define ft first
#define sd second
#define pb push_back
#define ms(x,y) memset(x,y,sizeof(x))
int m;
char t[maxn],s[maxn];
int nex[maxn][30];
int main(){
    scanf("%s",s+1);
    int n=strlen(s+1);
    scanf("%d",&m);
    for(int j=0;j<26;j++)nex[n][j]=-1;//不存在的赋值为-1
    for(int i=n;i>=1;i--){
        for(int j=0;j<26;j++)nex[i-1][j]=nex[i][j];
        nex[i-1][s[i]-'a']=i;
    }
    while(m--){
        scanf("%s",t+1);
        int len=strlen(t+1);
        bool flag=0;
        int pos=0;//从虚根开始匹配
        for(int i=1;i<=len;i++){
            pos=nex[pos][t[i]-'a'];//当前字符在母串中的位置
            if(pos==-1){
                flag=1;break;
            }
        }
        if(!flag)puts("Yes");
        else puts("No");
    }
    return 0;
}
内容概要:本文围绕“MATLAB基于Copula理论的多风电场风电预测误差时空相关性建模研究”展开,重点利用Copula理论对多个风电场的预测误差进行时空相关性建模,旨在提高风电功率预测的准确性与可靠性。通过MATLAB实现建模过程,充分考虑风电预测误差在时间和空间维度上的统计特性与依赖结构,构建能够刻画复杂非线性相关关系的概率模型。该方法有助于提升高比例可再生能源接入背景下电力系统调度、风险评估与稳定性分析的能力,尤其适用于多风电场协同运行与预测误差不确定性管理场景。文中可能涉及边缘分布拟合、Copula函数选型、参数估计与模型验证等关键技术环节。; 适合人群:具备一定概率统计与电力系统背景知识,熟悉MATLAB编程,从事新能源预测、电力系统规划或风险管理等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于多风MATLAB基于Copula理论的多风电场风电预测误差时空相关性建模研究电场联合预测误差建模,提升区域风电出力预测精度;②支撑电力系统风险评估、储能配置与调度决策,增强电网对风电波动性的适应能力;③复现高水平期刊(如SCI)研究成果,推动学术研究与实际应用结合。; 阅读建议:建议读者结合文中提供的MATLAB代码深入理解Copula建模流程,重点关注边缘分布选择与Copula函数比较,同时可扩展至光伏等其他可再生能源的时空相关性建模研究。
内容概要:本文介绍了一种基于变分模态分解(VMD)与麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)相结合的多变量电力负荷预测模型,该模型通过Matlab代码实现。首先利用VMD对原始负荷序列进行分解,降低非平稳性;再通过SSA优化LSSVM的关键参数,提高预测精度;最后将处理后的各模态分量重构得到最终预测结果。该方法有效提升了负荷预测的准确性与稳定性,适用于多变量输入场景下的短期负荷预测任务。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事能源预测相关工作的工程技术人员;尤其适合正在开展智能优化算法与机器学习在电力负荷预测方向研究的学者。; 使用场景及目标:①用于提升电力系统中短期负荷预测精度,支持电网调度与运行决策【VMD-SSA-LSSVM】基于变分模态分解与麻雀优化Lssvm的负荷预测【多变量】(Matlab代码实现);②为研究VMD、SSA、LSSVM等先进算法在时间序列预测中的融合应用提供可复现的技术方案与代码参考;③作为SCI论文复现或科研项目开发的基础模型框架。; 阅读建议:建议读者结合文中涉及的信号分解、智能优化与机器学习理论,逐步调试Matlab代码,理解每一步的数据处理与参数优化逻辑,并尝试在不同数据集上验证模型性能,进一步拓展至风电、光伏等可再生能源出力预测领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值