TextCNN文本分类快速上手

本文介绍了TextCNN的语义识别、快速训练和高效率推理特性,以及如何使用Docker进行从零安装、基于镜像构建容器和模型训练。详细步骤包括打包操作、性能测试和显卡管理。

TextCNN介绍:

1.支持语义识别和分类置信度输出。

2.训练速度快,3000样本在1-3分钟。

3.推理性能佳,5K-10K/秒。

  1. 平均单条推理速度在0.2秒。

  2. 单个模型占用GPU约1.2G,不使用GPU也可以。

Docker从0安装

 docker run --name textcnn_chat --gpus=all --ipc=host --ulimit memlock=-1 \
 -itd -p 6007:6007 -p 8501:8501 -p 8502:8000 \
 -v /etc/localtime:/etc/localtime:ro -v ./textcnn-server:/textcnn-server \
 -d jackyqs/textcnn-server:1.3 

特点:

1.支持语义识别和分类置信度输出。

2.训练速度快,3000样本在1-3分钟。

3.推理性能佳,5K-10K/秒。

4.支持GPU训练,支持异步训练,支持sbert计算分类特征相似度,支持模型训练后重载,支持test/acc, test/recall, test/precision, test/F1输出。(http://localhost:8502)

5.支持类ChatGPT 1-3论对话 streamlit run app.py (http://localhost:8501)

Docker基于镜像安装

容器打包操作(生成镜像时使用的命令)

  • 将安装好、启动好的容器打包成镜像

    docker commit -m='textCNN-server commit' -a='zhangzh' textcnn_chat zzh/textcnn:1.0
    
  • 将镜像,打成可以传到其他地方的tar包

    docker save -o textcnn.tar zzh/textcnn:1.0
    

安装时命令

  • 网盘地址

    ​ 这里因为网盘上传文件有大小限制,所以使用了分卷压缩的方式进行了上传,全部下载下来就可以。

    链接:https://pan.baidu.com/s/1X4vBM8xaoVzrMOKIJVxGRw?pwd=70v8 
    提取码:70v8
    

在这里插入图片描述

  • 将下载好的镜像文件和代码模型文件上传到服务器上,并进行解压,然后在该目录进行操作。

  • 在其他的docker服务器加载镜像

    docker load -i textcnn.tar
    
  • 启动

 docker run --name textcnn_chat --gpus=all --ipc=host --ulimit memlock=-1 \
-itd -p 6007:6007 -p 8501:8501 -p 8502:8000 \
 -v /etc/localtime:/etc/localtime:ro -v ./textcnn-server:/textcnn-server \
 -d zzh/textcnn:1.0

特点:

1.支持语义识别和分类置信度输出。

2.训练速度快,3000样本在1-3分钟。

3.推理性能佳,5K-10K/秒。

4.支持GPU训练,支持异步训练,支持sbert计算分类特征相似度,支持模型训练后重载,支持test/acc, test/recall, test/precision, test/F1输出。(http://localhost:8502)

5.支持类ChatGPT 1-3论对话 streamlit run app.py (http://localhost:8501)

页面访问

http://ip:8502/

在这里插入图片描述

模型训练

准备好的训练数据如下:

在这里插入图片描述
tsv文件内容:

微信百万保障	3.285-6.575:您好您是陈国庆本人吗||8.790-15.400:陈先生您好我是微信百万保障中心的话务员给您致电是智能
虚假博彩	3.065-5.055:喂你好||5.060-21.560:您好打扰您一下什么这边是p气的电话客服现在给你致电呢谢谢通知您我们p即将的对应放上限了现在是您费要注册可以领取到平安彩金方便注册领取一下吗||21.560-22.705:l||23.710-25.881:喂能听到吗||25.935-30.176:喂能听到吗

其中,开头表示标签(类型),然后使用\t制表符进行分割,后边跟的是推理出该标签的内容。

每条数据使用\n换行符进行分割。

在这里插入图片描述

API访问

http://ip:8502/predict/ 

在这里插入图片描述

性能测试

6.2/s

在这里插入图片描述

其他

查看显卡信息

lspci | grep -i nvidia

在这里插入图片描述

然后,在该网站搜索版本型号

https://admin.pci-ids.ucw.cz/

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老司机张师傅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值