Kafka生产者

本文详细解析了为何要使用分区、分区策略(轮询、指定分区和基于key的hash分区)、数据可靠性保证(acks机制和ISR)以及故障处理策略。特别强调了ExactlyOnce语义的实现和Kafka幂等性在保证数据一致性的角色。
摘要由CSDN通过智能技术生成

分区写入Kafka策略

为什么要分区?

  • 方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic 又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了;

  • 可以提高并发,因为可以以Partition为单位读写了。

怎么分区?

将producer发送的数据封装成一个ProducerRecord对象。

  • 既没有partition值又没有key值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与topic可用的partition总数取余得到partition 值,也就是常说的round-robin算法。 =>TODO A

  • 指明partition的情况下,直接将指明的值直接作为partiton值;=>TODO B

  • 没有指明partition值但有key的情况下,将key的hash值与topic的partition 数进行取余得到partition值;=>TODO C

    val topic = "hellokafka"

    // 2 kafka的生产者
    val producer: KafkaProducer[String, String] = new KafkaProducer[String, String](props)

    for (i <- 1 to 10) {
      // 3 封装数据的对象

      //TODO A:没有指定key和分区,默认的策略为轮询,数据均匀写入多个分区中
      // (将多条数据批量写入到一个分区,达到一定大小再切换,而非写一条就切换分区)
      val record = new ProducerRecord[String, String](topic, "value- " + i)

      //TODO B:将数据发送到指定的分区编号   (topic, partition, k, v)
      // 区别于MR的偏移量为字节的偏移量,KFK的偏移量offset是行的偏移量
      val record = new ProducerRecord[String, String](topic, 1 , null,"myvalue:"+i)
      val record = new ProducerRecord[String, String](topic, 1 , "doit","myvalue:"+i)

      val partitionNum = i % 3  // 指定数据均匀写入3个分区中
      val record = new ProducerRecord[String, String](topic, partitionNum, null,"myvalue:"+i)

      //TODO C:不指定分区编号,指定key, 分区编号 = key.hasacode % topic的分区数量
      val record = new ProducerRecord[String, String](topic , "doit","myvalue:"+i)

      //根据key的hashcode值模除以topic分区的数量,返回一个分区编号,这里的key没有用处。用来生成随机哈希值
      val record = new ProducerRecord[String, String](topic, UUID.randomUUID().toString, "myvalue:" + i)

      // 4 发送消息
      producer.send(record)
    }

注意

  • A情况:将多条数据批量写入到一个分区,达到一定大小再切换,而非写一条就切换分区

  • 区别于MR的偏移量为字节的偏移量,KFK的偏移量offset是行的偏移量

数据可靠性保证

为保证producer发送的数据,能可靠的发送到指定的topic,topic的每个partition收到 producer发送的数据后,都需要向producer发送ack(acknowledgement确认收到) ,如果producer收到ack,就会进行下一轮的发送,否则重新发送数据。

副本数据同步策略

Kafka在全部follower同步完成,才发送ack

  • 同样为了容忍n台节点的故障,第一种方案需要2n+1个副本,而第二种方案只需要n+1个副本,而Kafka的每个分区都有大量的数据,第一种方案会造成大量数据的冗余。

  • 虽然第二种方案的网络延迟会比较高,但网络延迟对Kafka的影响较小。

In-Sync Replica set(ISR)

leader收到数据,所有follower都开始同步数据,有一个follower故障,不能与leader进行同步,leader就要一直等下去,  直到它完成同步,才能发送ack。这个问题怎么解决呢?

Leader维护了一个动态的In-Sync Replica set (ISR),意为和leader保持同步的follower集合。当ISR中的follower完成数据的同步之后,leader就会给follower发送ack。如果follower长时间未向leader同步数据 , 则该follower将被踢出ISR, 该时间阈值由replica.lag.time.max.ms参数设定。Leader发生故障之后,就会从ISR中选举新的leader。

分区中的所有副本统称为AR(Assigned Repllicas)。所有与leader副本保持一定程度同步的副本(包括Leader)组成ISR(In-Sync Replicas),ISR集合是AR集合中的一个子集。消息会先发送到leader副本,然后follower副本才能从leader副本中拉取消息进行同步,同步期间内follower副本相对于leader副本而言会有一定程度的滞后。前面所说的“一定程度”是指可以忍受的滞后范围,这个范围可以通过参数进行配置。与leader副本同步滞后过多的副本(不包括leader)副本,组成OSR(Out-Sync Relipcas),由此可见:AR=ISR+OSR。在正常情况下,所有的follower副本都应该与leader副本保持一定程度的同步,即AR=ISR,OSR集合为空。

ack应答机制

对于某些不太重要的数据,对数据的可靠性要求不是很高,能够容忍数据的少量丢失,所以没必要等ISR中的follower全部接收成功。所以Kafka为用户提供了三种可靠性级别,用户根据对可靠性和延迟的要求进行权衡,选择以下的配置。

acks:

0:producer不等待broker的ack,这一操作提供了一个最低的延迟,broker一接收到还没有写入磁盘就已经返回,当broker故障时有可能丢失数据;At Most Once

1:producer等待broker的ack,partition的leader落盘成功后返回ack,如果在follower 同步成功之前leader故障,那么将会丢失数据;

-1(all) :producer等待broker的ack,partition的leader和follower全部落盘成功后才返回ack。但是如果在follower同步完成后,broker发送ack之前,leader发生故障,那么会造成数据重复。At  Least Once

val props = new Properties()
//配置ACKS:数据同步应答
props.setProperty("acks", "1")

故障处理细节(以下图片来自网络,侵删)

request.required.acks=1

request.required.acks=-1

 request.required.acks=-1

HW&LEO

LEO(LogEndOffset):表示每个partition的log最后一条Message的位置。

HW(HighWatermark):表示partition各个replicas数据间同步且一致的offset位置,即表示allreplicas已经commit位置,每个Broker缓存中维护此信息,并不断更新。是指consumer能够看到的此partition位置。Consumer只能看到commit的数据,也就是HW之前的数据。

follower故障

follower发生故障后会被临时踢出ISR,待该follower恢复后,follower会读取本地磁盘  记录的上次的HW,并将log文件高于HW的部分截取掉,从HW开始向leader进行同步。等该follower的LEO大于等于该Partition的HW,即follower追上leader之后,就可以重新加入ISR了。

Leader副本负责维护和跟踪ISR集合中所有的follower副本的滞后状态,当follower副本落后太多或者失效时,leader副本会吧它从ISR集合中剔除。如果OSR集合中follower副本“追上”了Leader副本,之后再ISR集合中的副本才有资格被选举为leader,而在OSR集合中的副本则没有机会(这个原则可以通过修改对应的参数配置来改变)

leader故障

leader发生故障之后,会从ISR中选出一个新的leader,为保证多个副本之间的数据一致性, 其余的follower会先将各自的log文件高于HW的部分截掉,然后从新的leader同步数据。

注意: 这只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。

Exactly Once语义

将服务器的ACK级别设置为-1,可以保证Producer到Server之间不丢失数据,即At  Least Once语义。相对的,设置为0,可以保证生产者每条消息只会被发送一次,即At Most Once语义。At Least Once可保证数据不丢失,但不能保证数据不重复;相对的,At Least Once 可保证数据不重复,但不能保证数据不丢失。

对于重要的信息,如交易数据,下游数据消费者要求数据既不重复也不丢失,即Exactly Once语义。

0.11版本以前的Kafka,对此无能为力,只能保证数据不丢失,再在下游消费者对数据做全局去重。对于多个下游应用的情况,每个都需单独全局去重,对性能造成了影响。

0.11版本的Kafka,引入了一项重大特性:幂等性。指Producer不论向Server发送多少次重复数据,Server端都只会持久化一条。幂等性结合At Least Once语义,就构成了Kafka的Exactly Once语义。即:

                                                             At Least Once + 幂等性= Exactly Once

启用幂等性只需将Producer的参数中enable.idompotence设置为true。幂等性实现就是将原来下游的去重放在了数据上游。开启幂等性的Producer在初始化的时候会被分配一个PID,发往同一Partition的消息会附带Sequence Number。而 Broker端会对<PID, Partition, SeqNumber>做缓存,当具有相同主键的消息提交时,Broker只会持久化一条。

但是PID重启就会变化,同时不同的Partition也具有不同主键,所以幂等性无法保证跨分区跨会话的Exactly Once。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值