numpy.vectorize()

本文通过对比循环写法和向量化写法,演示了如何使用numpy的vectorize函数来提高数组操作的效率。通过计算数组中每个元素的平方这一简单示例,展示了向量化写法在时间性能上的优势。
摘要由CSDN通过智能技术生成

向量化函数,看一个简单的例子,计算数组中每个元素的平方,以下为两种不同的写法

import numpy
def fun(x):
    return x**2

x = numpy.array(range(5))

# 矢量化写法
vec_fun = numpy.vectorize(fun)
vec_res = vec_fun(x)

# 循环写法
loop_res = [fun(i) for  i in x]

输出结果

print(vec_res)
>>> [ 0  1  4  9 16]
print(loop_res)
>>> [0, 1, 4, 9, 16]

时间上向量化似乎快一些

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值