【OpenCV图像处理基础】

24 篇文章 2 订阅
8 篇文章 2 订阅
本文档详细介绍了OpenCV库在图像处理和视频分析中的基本操作,包括显示图像、图像腐蚀、图像模糊、Canny边缘检测、播放视频、调用摄像头、彩色目标跟踪等。通过实例代码展示了如何实现这些功能,是学习OpenCV入门的良好参考资料。
摘要由CSDN通过智能技术生成


OpenCV图像处理基础

1、显示图像

结果
在这里插入图片描述

代码如下(示例):

#include <opencv2/opencv.hpp>  //头文件
using namespace cv;  //包含cv命名空间

static void test() {
	// 【1】读入一张图片,载入图像
	Mat srcImage = imread("lena.jpg");
	// 【2】显示载入的图片
	imshow("【1、显示图像】", srcImage);
	// 【3】等待任意按键按下
	waitKey(0);
}
int main( )
{    
	test();
	system("pause");
	return 0;
}  

2、图像腐蚀

结果:
在这里插入图片描述

代码如下(示例):

#include<opencv2/opencv.hpp>
#include<string>
using namespace cv;

static void  test()
{
	//载入原图  
	std::string path = "1.jpg";
	Mat srcImage = imread(path);
	//显示原图
	imshow("【原图】腐蚀操作", srcImage);
	//进行腐蚀操作 
	Mat element = getStructuringElement(MORPH_RECT, Size(15, 15));
	Mat dstImage;
	erode(srcImage, dstImage, element);
	//显示效果图 
	imshow("【效果图】腐蚀操作", dstImage);
	waitKey(0);
}

int  main()
{
	test();
	system("pause");
	return 0;
}

3、blur图像模糊

结果:
在这里插入图片描述

代码如下(示例):

#include <opencv2/opencv.hpp>  //头文件
using namespace cv;  //包含cv命名空间

static void test()
{
	//【1】载入原始图
	std::string path = "binary.bmp";
	Mat srcImage = imread(path);
	//【2】显示原始图
	imshow("均值滤波【原图】", srcImage);
	//【3】进行均值滤波操作
	Mat dstImage;
	blur(srcImage, dstImage, Size(7, 7));
	//【4】显示效果图
	imshow("均值滤波【效果图】", dstImage);
	waitKey(0);
}

int main()
{
	test();
	system("pause");
	return 0;
}

4、canny边缘检测

结果:

在这里插入图片描述

代码如下(示例):

#include <opencv2/opencv.hpp>
using namespace cv;

static int test()
{
	//【0】载入原始图 
	std::string path = "F:/images/renwu1.jpg";
	Mat srcImage = imread(path);
	imshow("【原始图】Canny边缘检测", srcImage); 	//显示原始图 
	Mat dstImage, edge, grayImage;	//参数定义
	//【1】创建与src同类型和大小的矩阵(dst)
	dstImage.create(srcImage.size(), srcImage.type());
	//【2】将原图像转换为灰度图像
	cvtColor(srcImage, grayImage, COLOR_BGR2GRAY);
	//【3】先用使用 3x3内核来降噪
	blur(grayImage, edge, Size(3, 3));
	//【4】运行Canny算子
	Canny(edge, edge, 3, 21, 3);
	//【5】显示效果图 
	imshow("【效果图】Canny边缘检测", edge);
	waitKey(0);
	return 0;
}

int main()
{
	test();
	system("pause");
	return 0;
}

5、播放视频

结果:
在这里插入图片描述

代码如下(示例):

#include<opencv2/opencv.hpp>
#include<string>
using namespace cv;

static void  test()
{
	//【1】读入视频
	std::string path = "ludingji.mp4";
	VideoCapture capture(path);

	//【2】循环显示每一帧
	while (1)
	{
		Mat frame;//定义一个Mat变量,用于存储每一帧的图像
		capture >> frame;  //读取当前帧
		//若视频播放完成,退出循环
		if (frame.empty())
			break;
		imshow("读取视频", frame);  //显示当前帧
		waitKey(30);  //延时30ms
	}
}

int main()
{
	test();
	system("pause");
	return 0;
}

7、调用摄像头

结果:

代码如下(示例):

#include <opencv2\opencv.hpp>  
using namespace cv;

static void test()
{
	//【1】从摄像头读入视频
	VideoCapture capture(0);

	//【2】循环显示每一帧
	while (1)
	{
		Mat frame;  //定义一个Mat变量,用于存储每一帧的图像
		capture >> frame;  //读取当前帧
		imshow("读取视频", frame);  //显示当前帧
		waitKey(30);  //延时30ms
	}
}

int main()
{
	test();
	system("pause");
	return 0;
}

8、彩色目标跟踪

结果:
在这里插入图片描述
在这里插入图片描述

#include <opencv2\opencv.hpp>  
#include<iostream>
using namespace cv;
using namespace std;

//		描述:声明全局变量
Mat image;
bool backprojMode = false;
bool selectObject = false;
int trackObject = 0;
bool showHist = true;
Point origin;
Rect selection;
int vmin = 10, vmax = 256, smin = 30;


//----------【onMouse( )回调函数】----------
//		描述:鼠标操作回调
//------------------------------------------
static void onMouse(int event, int x, int y, int, void*)
{
	if (selectObject)
	{
		selection.x = MIN(x, origin.x);
		selection.y = MIN(y, origin.y);
		selection.width = std::abs(x - origin.x);
		selection.height = std::abs(y - origin.y);

		selection &= Rect(0, 0, image.cols, image.rows);
	}

	switch (event)
	{
	case EVENT_LBUTTONDOWN:
		origin = Point(x, y);
		selection = Rect(x, y, 0, 0);
		selectObject = true;
		break;
	case EVENT_LBUTTONUP:
		selectObject = false;
		if (selection.width > 0 && selection.height > 0)
			trackObject = -1;
		break;
	}
}

static void ShowHelpText()
{
	cout << "\n\n\t\t\t   当前使用的OpenCV版本为:" << CV_VERSION
		<< "\n\n  -------------------------------------------------------------";

	cout << "\n\n\t此Demo显示了基于均值漂移的追踪(tracking)技术\n"
		"\t请用鼠标框选一个有颜色的物体,对它进行追踪操作\n";

	cout << "\n\n\t操作说明: \n"
		"\t\t用鼠标框选对象来初始化跟踪\n"
		"\t\tESC - 退出程序\n"
		"\t\tc - 停止追踪\n"
		"\t\tb - 开/关-投影视图\n"
		"\t\th - 显示/隐藏-对象直方图\n"
		"\t\tp - 暂停视频\n";
}

const char* keys =
{
	"{1|  | 0 | camera number}"
};


int main(int argc, const char** argv)
{
	ShowHelpText();

	VideoCapture cap;
	Rect trackWindow;
	int hsize = 16;
	float hranges[] = { 0,180 };
	const float* phranges = hranges;

	cap.open(0);

	if (!cap.isOpened())
	{
		cout << "不能初始化摄像头\n";
	}

	namedWindow("Histogram", 0);
	namedWindow("CamShift Demo", 0);
	setMouseCallback("CamShift Demo", onMouse, 0);
	createTrackbar("Vmin", "CamShift Demo", &vmin, 256, 0);
	createTrackbar("Vmax", "CamShift Demo", &vmax, 256, 0);
	createTrackbar("Smin", "CamShift Demo", &smin, 256, 0);

	Mat frame, hsv, hue, mask, hist, histimg = Mat::zeros(200, 320, CV_8UC3), backproj;
	bool paused = false;

	for (;;)
	{
		if (!paused)
		{
			cap >> frame;
			if (frame.empty())
				break;
		}

		frame.copyTo(image);

		if (!paused)
		{
			cvtColor(image, hsv, COLOR_BGR2HSV);

			if (trackObject)
			{
				int _vmin = vmin, _vmax = vmax;

				inRange(hsv, Scalar(0, smin, MIN(_vmin, _vmax)),
					Scalar(180, 256, MAX(_vmin, _vmax)), mask);
				int ch[] = { 0, 0 };
				hue.create(hsv.size(), hsv.depth());
				mixChannels(&hsv, 1, &hue, 1, ch, 1);

				if (trackObject < 0)
				{
					Mat roi(hue, selection), maskroi(mask, selection);
					calcHist(&roi, 1, 0, maskroi, hist, 1, &hsize, &phranges);
					normalize(hist, hist, 0, 255, NORM_MINMAX);

					trackWindow = selection;
					trackObject = 1;

					histimg = Scalar::all(0);
					int binW = histimg.cols / hsize;
					Mat buf(1, hsize, CV_8UC3);
					for (int i = 0; i < hsize; i++)
						buf.at<Vec3b>(i) = Vec3b(saturate_cast<uchar>(i*180. / hsize), 255, 255);
					cvtColor(buf, buf, COLOR_HSV2BGR);

					for (int i = 0; i < hsize; i++)
					{
						int val = saturate_cast<int>(hist.at<float>(i)*histimg.rows / 255);
						rectangle(histimg, Point(i*binW, histimg.rows),
							Point((i + 1)*binW, histimg.rows - val),
							Scalar(buf.at<Vec3b>(i)), -1, 8);
					}
				}
				calcBackProject(&hue, 1, 0, hist, backproj, &phranges);
				backproj &= mask;
				RotatedRect trackBox = CamShift(backproj, trackWindow,
					TermCriteria(TermCriteria::EPS | TermCriteria::COUNT, 10, 1));

				if (trackWindow.area() <= 1)
				{
					int cols = backproj.cols, rows = backproj.rows, r = (MIN(cols, rows) + 5) / 6;
					trackWindow = Rect(trackWindow.x - r, trackWindow.y - r,
						trackWindow.x + r, trackWindow.y + r) &
						Rect(0, 0, cols, rows);
				}

				if (backprojMode)
					cvtColor(backproj, image, COLOR_GRAY2BGR);

				ellipse(image, trackBox, Scalar(0, 0, 255), 3, LINE_AA);

			}
		}
		else if (trackObject < 0)
			paused = false;

		if (selectObject && selection.width > 0 && selection.height > 0)
		{
			Mat roi(image, selection);
			bitwise_not(roi, roi);
		}

		imshow("CamShift Demo", image);
		imshow("Histogram", histimg);

		char c = (char)waitKey(10);
		if (c == 27)
			break;
		switch (c)
		{
		case 'b':
			backprojMode = !backprojMode;
			break;
		case 'c':
			trackObject = 0;
			histimg = Scalar::all(0);
			break;
		case 'h':
			showHist = !showHist;
			if (!showHist)
				destroyWindow("Histogram");
			else
				namedWindow("Histogram", 1);
			break;
		case 'p':
			paused = !paused;
			break;
		default:
			;
		}
	}

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值