
24-cvpr-Extracting Graph from Transformer for Scene Graph Generation 学习笔记
受到Graph-RCNN [43]通过预测相关性来修剪对象对的影响,我们提出了一个连通性预测方法,该方法预测两个对象节点之间是否存在至少一条边,以进行关系提取。通过使用由不确定性调整的关系标签,目标检测和关系抽取的多任务学习可以根据检测对象的质量进行动态调节。它与一个由不匹配真实对象的对象候选组成的区域配对,并与公式 (2) 中的。通过交替的自注意力层和交叉注意力层,对象查询学习输入图像中对象候选的特征。个物体查询之间的双向关系,我们的关系提取器旨在通过将注意力查询和键分别视为主语和宾语,从整个。




























