二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,二分查找要求线性表必须采用顺序存储结构,不宜用于链式结构,而且表中元素按关键字有序排列 (解释:所以二分查找的时候一定要是有序的数组)
二分法思想
(1)首先,从数组的中间元素开始搜索,如果该元素正好是目标元素,则搜索过程结束,否则执行下一步。
(2)如果目标元素大于/小于中间元素,则在数组大于/小于中间元素的那一半区域查找,然后重复步骤(1)的操作。
(3)如果某一步数组为空,则表示找不到目标元素
图解
(1)查找21

(2)查找70

(3)查找失败

代码
(1)采用循环的方式
public class test1 {
public static void main(String[] args) {
int[] arr={5,13,19,21,37,56,64,75,80,88,92};
int index=binarySearch(arr,666);
System.out.println(index);
}
private static int binarySearch(int[] arr, int item) {
//若找到,则返回值为该元素在表中的位置,否则为-1
int low=0;//数组最小索引值
int high=arr.length-1;//数组最大索引值
int index=-1;
while(low<=high){
int mid=(low+high)/2;//数组中间下标
int guess=arr[mid];//数组中间元素值
if(guess==item){
index=mid;
break;//找到目标元素的下标则退出返回
}if(guess>item){
high=mid-1;
}if(guess<item){
low=mid+1;
}
}
return index;
}
}
(2)采用递归的方式
public class test2 {
public static void main(String[] args) {
int[] arr={5,13,19,21,37,56,64,75,80,88,92};
int index=binarySearch(arr,80,0,arr.length-1);
System.out.println(index);
}
private static int binarySearch(int[] arr, int item,int low,int high) {
if(low>high){
return -1;//查找不到时返回-1
}
int mid=(low+high)/2;
int guess=arr[mid];
if(guess==item){
return mid;
}else if(guess>item){
return binarySearch(arr,item,low,mid-1);//递归
}else {
return binarySearch(arr,item,mid+1,high);//递归
}
}
}
时间复杂度
判定树:树中每个结点表示表中一个记录,结点中的值为该记录在表中的位置,通常称这个查找过程的二叉树称为判定树。折半查找法在成功时进行比较的关键字个数最多不超过树的深度。

二分法查找的效率非常高效,假设查找数组的区间大小是n,缩小的次数为K,每次查找后数据都会缩小为原来的一半,也就是会除以2,最坏情况下,直到查找区间被缩小为空,才停止

每一次缩小操作只涉及两个数据的大小比较,经过K次区间缩小的操作,空间复杂度就是O(k),n/2k = 1得到k=log2 n,故时间复杂度就是O(logn)

1913

被折叠的 条评论
为什么被折叠?



