2021.3.19 嵌入式组会笔记 指导、学习记录

本文详述了STM32最小系统板PCB设计要点,包括电容布局、晶振选择、电源线宽设定、丝印规范以及PCB尺寸优化。同时,介绍了QT软件的使用学习。此外,探讨了物联网的三层架构——感知层、网络层和应用层,涉及RFID、ZigBee等技术,并提到了关键算法如ESO和PID。

一、首先对STM32最小板PCB进行点评

1.电容的作用是对电源滤波,因此需要放置于离器件芯片电源处接近的位置,一般放置于芯片背面。

2.需要开始针对STM32进行软件编程上的学习。

3.尽量使用有源晶振,减少干扰,在晶振下面尽量不防止导线防止对其影响。

4.电源线设置30mil。

5.注意丝印大小及方向,让其为统一尺寸并只有两个方向。

6.PCB板大小关系其成本,使其面积越小越好。

7.使用CAD绘制其外框,并让四角为圆角,设置F3孔。

8.排针之间不走线。

9.让电源线与信号线之间有比较大的间距防止干扰。

10.过孔:信号线的8mil、电源的12mil。

 

二、进行QT介绍学习及软件使用讲解

 

三、对物联网进行介绍并学习

首先物联网由感知层、网络层、应用层组成,其目的分别为全面感知、可靠传输及智能处理。

感知层中可使用RFID、二维码、无线网络传感器等技术;网络层可使用ZigBee(功耗低)、移动互联、UWB(抗截获抗干扰)等技术。

RFID中以频率分类为低频、高频、超高频等。

ESO算法:扩张状态观测器(卡尔曼滤波器)

PID算法:比例积分微分

 

 

 

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值