自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

原创 一文看懂词嵌入word embedding(2种算法+其他文本表示比较)

文本表示(Representation) 文本是一种非结构化的数据信息,是不可以直接被计算的。 文本表示的作用就是将这些非结构化的信息转化为结构化的信息,这样就可以针对文本信息做计算,来完成我们日常所能见到的文本分类,情感判断等任务。 文本表示的方法有很多种,下面只介绍 3 类方式: 独热编码...

2020-02-18 12:58:28

阅读数 27

评论数 0

原创 一文看懂 AI 训练集、验证集、测试集(附:分割方法 交叉验证)

数据在人工智能技术里是非常重要的!本篇文章将详细给大家介绍3种数据集:训练集、验证集、测试集。 同时还会介绍如何更合理的讲数据划分为3种数据集。最后给大家介绍一种充分利用有限数据的方式:交叉验证法。 先用一个不恰当的比喻来说明3种数据集之间的关系: 训练集相当于上课学知识 验证集相当于课后...

2019-12-20 20:36:21

阅读数 115

评论数 0

原创 我的业务要不要用人工智能?引入AI前你需要评估的(四)

这是一个系列文章,从各个角度来评估一个问题:“我的业务要不要用 AI ?能不能用 AI?” 本期评估角度——黑箱 黑箱是人工智能的缺点 并非所有人工智能都是黑箱的,大家说的黑箱主要指当下最热门、效果也最好的「深度学习」。 在我之前写的《一文看懂深度学习》中,举过一个水龙头的例子,从那个例子就...

2019-12-13 08:51:25

阅读数 110

评论数 0

原创 我的业务要不要用人工智能?引入AI前你需要评估的(三)

这是一个系列文章,从各个角度来评估一个问题:“我的业务要不要用 AI ?能不能用 AI?” 本期评估角度——学习 往期内容: 我的业务要不要用人工智能?引入AI前你需要评估的(一)) 我的业务要不要用人工智能?引入AI前你需要评估的(二)) 「持续学习」是人工智能的灵魂 前两篇已经解释了,基...

2019-12-09 20:08:48

阅读数 295

评论数 0

原创 我的业务要不要用人工智能?引入AI前你需要评估的(二)

这是一个系列文章,从各个角度来评估一个问题:“我的业务要不要用 AI ?能不能用 AI?” 本期评估角度——数据。 底层逻辑:数据驱动 基于规则的旧时代 在人工智能普及之前,大家用的产品都是「基于规则」的。 我们通过总结规则,然后让计算机自动的执行这些规则,我们日常工作和生活中很多问题都...

2019-12-04 20:17:05

阅读数 108

评论数 0

原创 想利用人工智能,你必须知道这些(一)

有时会跟朋友聊一聊 AI 的话题,我发现很多人对 AI 都有过度高估或者过度低估的情况。有些问题根本不需要用 AI,有些问题即使用 AI 也解决不了。 所以打算写一个系列,从各个角度来评估一个问题:“要不要用 AI ?AI 能否解决我的问题?” 评估角度:特征? 这篇文章切入的角度是:特征 ...

2019-11-26 20:44:52

阅读数 106

评论数 0

原创 一文看懂分类模型的评估指标:准确率、精准率、召回率、F1、ROC曲线、AUC曲线

机器学习模型需要有量化的评估指标来评估哪些模型的效果更好。 本文将用通俗易懂的方式讲解分类问题的混淆矩阵和各种评估指标的计算公式。将要给大家介绍的评估指标有:准确率、精准率、召回率、F1、ROC曲线、AUC曲线。 机器学习评估指标大全 所有事情都需要评估好坏,尤其是量化的评估指标。 高考成...

2019-11-21 22:01:05

阅读数 210

评论数 0

原创 一文看懂 Attention(本质原理 3大优点 5大类型)

Attention 正在被越来越广泛的得到应用。尤其是 BERT 火爆了之后。 Attention 到底有什么特别之处?他的原理和本质是什么?Attention都有哪些类型?本文将详细讲解Attention的方方面面。 Attention 的本质是什么 Attention(注意力)机制如果浅...

2019-11-14 18:38:36

阅读数 116

评论数 0

原创 一文看懂 NLP 里的模型框架 Encoder-Decoder 和 Seq2Seq

Encoder-Decoder 和 Seq2Seq Encoder-Decoder 是 NLP 领域里的一种模型框架。它被广泛用于机器翻译、语音识别等任务。 本文将详细介绍 Encoder-Decoder、Seq2Seq 以及他们的升级方案Attention。 什么是 Encoder-D...

2019-10-29 10:08:54

阅读数 121

评论数 0

原创 一文看懂集成学习(详解 bagging、boosting 以及他们的 4 点区别)

在机器学习中,我们讲了很多不同的算法。那些算法都是单打独斗的英雄。而集成学习就是将这些英雄组成团队。实现“3 个臭皮匠顶个诸葛亮”的效果。 本文将介绍集成学习的 2 种主要思路:bagging、boosting。 什么是集成学习? 集成学习归属于机器学习,他是一种「训练思路」,并不是某种具体...

2019-10-17 16:25:30

阅读数 122

评论数 0

原创 一文看懂 Word2vec(基本概念 2种训练模型 5个优缺点)

Word2vec Word2vec 是 Word Embedding 方式之一,属于 NLP 领域。他是将词转化为「可计算」「结构化」的向量的过程。本文将讲解 Word2vec 的原理和优缺点。 这种方式在 2018 年之前比较主流,但是随着 BERT、GPT2.0 的出现,这种方式已经不算效...

2019-09-26 20:59:53

阅读数 571

评论数 2

原创 「59页PDF」自然语言处理 NLP 基本概念大全(免费下载)

easyai.tech 发现入门人工智能是一件很难的事情,尤其是对于非技术人员。 于是我们将国内外优秀的科普内容用最通俗易懂的方式整合到一起,专门针对非技术人员,让大家都能理解人工智能领域里的基本概念。 先通过一张长图来讲解一下 PDF 中会涉及到的主要内容,如果想了解详情请下载 PDF。 PD...

2019-09-24 09:17:46

阅读数 29

评论数 0

原创 一文看懂随机森林 - Random Forest(附 4 个构造步骤+10 个优缺点)

本文首发自 产品经理的人工智能知识库 原文地址:《一文看懂随机森林 - Random Forest(附 4 个构造步骤+10 个优缺点)》 随机森林是一种由决策树构成的集成算法,他在很多情况下都能有不错的表现。 本文将介绍随机森林的基本概念、4 个构造步骤、4 种方式的对比评测、10 个优缺点...

2019-08-22 09:08:09

阅读数 1239

评论数 2

原创 「65页PDF」让 PM 全面理解深度学习

本文汇总了深度学习相关的重要知识点,通过长图和 PDF 的方式呈现给大家,欢迎各位 PM 下载。 访问「easyAI - 产品经理的 AI 知识库」下载 PDF 下面是内容结构和长图: 深度学习全景图 深度学习概要 卷积神经网络 - CNN 循环神经网络 - RNN 长短期记忆网络 – LSTM...

2019-08-06 19:47:18

阅读数 18

评论数 0

原创 一文看懂自然语言生成 - NLG(6个实现步骤+3个典型应用)

本文首发自 easyAI - 人工智能知识库 原文地址:《一文看懂自然语言生成 - NLG(6个实现步骤+3个典型应用)》 自然语言生成 - NLG 是 NLP 的重要组成部分,他的主要目的是降低人类和机器之间的沟通鸿沟,将非语言格式的数据转换成人类可以理解的语言格式。 本文除了介绍 NLG ...

2019-08-01 14:19:27

阅读数 566

评论数 0

原创 一文看懂深度学习(白话解释+8个优缺点+4个典型算法)

本文首发自 easyAI - 人工智能知识库 原文地址:《一文看懂深度学习(白话解释+8个优缺点+4个典型算法)》 深度学习有很好的表现,引领了第三次人工智能的浪潮。目前大部分表现优异的应用都用到了深度学习,大红大紫的 AlphaGo 就使用到了深度学习。 本文将详细的给大家介绍深度学习的基本...

2019-07-25 09:22:08

阅读数 488

评论数 1

原创 一文看懂生成对抗网络 - GANs?(基本原理+10种典型算法+13种应用)

本文首发自 easyAI - 人工智能知识库 原文地址:《一文看懂生成对抗网络 - GANs?(基本原理+10种典型算法+13种应用)》 生成对抗网络 - GANs 是最近2年很热门的一种无监督算法,他能生成出非常逼真的照片,图像甚至视频。我们手机里的照片处理软件中就会使用到它。 本文将详细介...

2019-07-17 00:31:06

阅读数 435

评论数 0

原创 一文看懂循环神经网络-RNN(独特价值+优化算法+实际应用)

本文首发在 easyAI - 人工智能知识库 原文地址:《一文看懂循环神经网络-RNN(独特价值+优化算法+实际应用)》 卷积神经网络 - CNN 已经很强大的,为什么还需要RNN? 本文会用通俗易懂的方式来解释 RNN 的独特价值——处理序列数据。同时还会说明 RNN 的一些缺陷和它的变种算...

2019-07-04 20:27:02

阅读数 357

评论数 0

原创 「75页PDF免费下载」面向所有人的机器学习科普大全

「75页PDF」面向所有人的机器学习科普大全 本文首发在 easyAI - 人工智能知识库 机器学习作为人工智能领域里的一个重要部分,越来越多的人开始关注。 但是大部分人对机器学习的了解不深入,不完整,甚至是存在一些误解。 本文就是面向所有人的机器学习科普大全,涉及所有机器学习相关的关键知识点。...

2019-05-31 10:25:44

阅读数 46

评论数 0

转载 「75页PDF免费下载」面向所有人的机器学习科普大全

本文首发在 easyAI,点击查看原文 《「75页PDF免费下载」面向所有人的机器学习科普大全》 机器学习作为人工智能领域里的一个重要部分,越来越多的人开始关注。 但是大部分人对机器学习的了解不深入,不完整,甚至是存在一些误解。 本文就是面向所有人的机器学习科普大全,涉及所有机器学习相关的关键知...

2019-05-09 02:50:34

阅读数 55

评论数 0

原创 一文看懂什么是强化学习?应用场景和主流算法

本文首发自 easyAI——人工智能知识库 《一文看懂什么是强化学习?应用场景和主流算法》 强化学习是机器学习的一种学习方式,它跟监督学习、无监督学习是对应的。本文将详细介绍强化学习的基本概念、应用场景和主流的强化学习算法及分类。 什么是强化学习? 强化学习并不是某一种特定的算法,而是一类算法...

2019-04-18 22:08:07

阅读数 726

评论数 0

原创 什么是无监督学习?概念、使用场景及算法详解

无监督学习是机器学习领域内的一种学习方式。本文将给大家解释他的基本概念,告诉大家无监督学习可以用用到哪些具体场景中。 最后给大家举例说明2类无监督学习的思维:聚类、降维。以及具体的4种算法。 什么是无监督学习? 无监督学习是机器学习中的一种训练方式/学习方式: 下面通过跟监督学习的对比来理解无...

2019-04-11 13:54:59

阅读数 1498

评论数 0

原创 什么是监督学习?如何理解分类和回归?

本文首发在 easyAI —— 人工智能知识库 什么是监督学习? 监督学习是机器学习中的一种训练方式/学习方式: 监督学习需要有明确的目标,很清楚自己想要什么结果。比如:按照“既定规则”来分类、预测某个具体的值… 监督并不是指人站在机器旁边看机器做的对不对,而是下面的流程: 选择一个适合目标...

2019-03-21 23:49:36

阅读数 630

评论数 0

原创 这可能是2019年全网最好的「机器学习」科普文

机器学习、人工智能、深度学习是什么关系? 本文首发在 easyAI——人工智能知识库 1956 年提出 AI 概念,短短3年后(1959) Arthur Samuel 就提出了机器学习的概念: Field of study that gives computers the ability to ...

2019-03-12 21:18:19

阅读数 100

评论数 1

原创 别把人工智能神话了,用「HBI 法则」测试一下 AI 是否真的适合你的业务?

“人工智能”和“AI”正在经历第三次浪潮,已经进入了大众的视野。“AI双摄”、“AI美颜”、“AI翻译”、“自动驾驶”)…… AI 在一些人眼里貌似是万能的,但是实际上并非如此,本文将给出一些原则,用来判断到底在什么情况下 人工智能(AI) 是有用的。 AI 并不是 “未来型技术” 打不死的小...

2019-02-02 22:36:11

阅读数 34

评论数 0

转载 小白也能看懂“深度学习”,就是它击败了李世石

本文首发在 easyAI——人工智能知识库 小白版本 有一个概念需要先清除:深度学习 属于 机器学习,机器学习 属于 人工智能 看了很多版本的解释,发现李开复在《人工智能》一书中讲的是最容易理解的,所以下面直接引用他的解释: 我们以识别图片中的汉字为例。 假设深度学习要处理的信息是“...

2019-01-18 09:27:39

阅读数 121

评论数 0

转载 人工智能的嘴巴——语音合成(Text to Speech | TTS)

本文首发在——easyAI——人工智能知识库 小白版本 语音合成就是让机器模仿人类说话。即输入一段文字,最终输出一段语音。 做个比较,当机器的“脑子”里想到了一段内容时,或者是看到了一段话时,知道哪些字应该怎么读: 拆解文字,得到音素的时长、频率变化,就和我们有时拆解文字的偏旁、前后缀来获得文...

2019-01-18 09:16:39

阅读数 1088

评论数 0

提示
确定要删除当前文章?
取消 删除