【常用表】常用泰勒公式与常用等价

本文介绍了常用的泰勒展开公式及等价无穷小概念,包括正弦、余弦、对数等函数的展开式,以及如何利用这些公式简化极限计算。通过掌握这些公式,可以提高解题效率和准确度。

1.常用泰勒公式

PS:没有展开到n阶是因为考试往往只会展开到如下阶数,竞赛除外

sinx=x−x36+o(x3)、arcsinx=x+x36+o(x3) sinx =x-\frac{x^3}{6}+o(x^3) 、arcsinx = x+\frac{x^3}{6}+o(x^3) sinx=x6x3+o(x3)arcsinx=x+6x3+o(x3)
tanx=x+x33+o(x3)、arcsinx=x−x33+o(x3) tanx=x+\frac{x^3}{3}+o(x^3) 、arcsinx = x-\frac{x^3}{3}+o(x^3) tanx=x+3x3+o(x3)arcsinx=x3x3+o(x3)
cosx=1−x22!+x44!+o(x4) cosx=1-\frac{x^2}{2!}+\frac{x^4}{4!}+o(x^4) cosx=12!x2+4!x4+o(x4)
ex=1+x+x22!+x33!+o(x3) e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+o(x^3) ex=1+x+2!x2+3!x3+o(x3)
ln(1+x)=x−x22+x33+o(x3) ln(1+x) = x-\frac{x^2}{2}+\frac{x^3}{3}+o(x^3) ln(1+x)=x2x2+3x3+o(x3)
(1+x)α=1+αx+α(α−1)2x2+o(x2) (1+x)^\alpha=1+\alpha x+\frac{\alpha (\alpha-1)}{2}x^2+o(x^2) (1+x)α=1+αx+2α(α1)x2+o(x2)

11−x=1+x+x2+x3+x4+o(x4) \frac{1}{1-x}=1+x+x^2+x^3+x^4+o(x^4) 1x1=1+x+x2+x3+x4+o(x4)
11+x=1−x+x2−x3+x4+o(x4) \frac{1}{1+x}=1-x+x^2-x^3+x^4+o(x^4) 1+x1=1x+x2x3+x4+o(x4)

2.常用等价无穷小

  • 最基础9个等价无穷小

    三角函数(5个):sinxsinxsinx ~ xxxtanxtanxtanx ~ xxxarcsinxarcsinxarcsinx ~ xxxarctanxarctanxarctanx ~ xxx1−cosx1-cosx1cosx ~ 12x2\frac{1}{2}x^221x2
    指数、对数(3个):ex−1e^x-1ex1 ~ xxxln(1+x)ln(1+x)ln(1+x) ~ xxxax−1a^x-1ax1 ~ xlnaxlnaxlna
    幂函数(1个):(1+x)a−1(1+x)^a-1(1+x)a1 ~ axaxax

  • 需要熟练掌握的
    本质是用泰勒展开与x进行相减,或者由洛必达和定义推导而来,记住,可加快做题速度和正确率
    ln(x+1+x2)ln(x+\sqrt{1+x^2})ln(x+1+x2)~xxx
    x−sinxx-sinxxsinx ~ 16x3\frac{1}{6}x^361x3x−arcsinxx-arcsinxxarcsinx ~ −16x3-\frac{1}{6}x^361x3
    x−tanxx-tanxxtanx ~ −13x3-\frac{1}{3}x^331x3x−arctanxx-arctanxxarctanx ~ 13x3\frac{1}{3}x^331x3
    在这里插入图片描述

3.吸收律

β\betaβα\alphaα的高阶无穷小,即lim⁡βα=0,\lim\frac{\beta}{\alpha}=0,limαβ=0,α±β\alpha±\betaα±β~α\alphaα
这说明高价无穷小在加减中可略去。
如,由于lim⁡x→0x3x2=0,于是x2−x3~x2 如,由于\lim_{x\to0}\frac{x^3}{x^2}=0,于是x^2-x^3~x^2x0limx2x3=0,x2x3x2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值