矩形覆盖问题

该博客介绍了如何使用递归方法解决使用21的小矩形无重叠覆盖2*n大矩形的问题。给出了递推公式f(n)=f(n-1)+f(n-2),并提供了Java代码实现。随着n值的增加,覆盖方法数量增加,递归策略用于计算不同覆盖方式的总数。

题目描述:
我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

测试用例:
在这里插入图片描述
解题方法:递归求解
在这里插入图片描述

当n=1的时候,显然只有一种覆盖方法;
在这里插入图片描述
当n=2的时候,如图有两种方法覆盖;
在这里插入图片描述如图,当n=3的时候,有三种覆盖方法;
在这里插入图片描述
如图,我们可以发现当n=4的时候有5种方法
我们看上面的图可以发现,n=4的时候有两种添加方法:
①直接在n=3的情况下,再后面中添加一个竖着的
②横着的显然能添加到n-2的情况上,也就是在n=2后面,添加2个横着的;

因此递推表达式就是f(n)=f(n-1)+f(n-2),当n>=3的时候成立;

代码如下:


public class Solution {
    public int rectCover(int target) {
        if (target <= 0){
            return 0;
        }
        if (target == 1){
            return 1;
        }
        if (target == 2){
            return 2;
        }
        return rectCover(target-1)+rectCover(target-2);
    }
}
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值