
深度学习为什么如此受欢迎?都有哪些优点?
支持向量机(SVM)是一种有监督的机器学习算法,可用于分类或回归问题。它使用一种称为内核技巧的技术来转换数据,然后基于这些转换找到可能输出之间的最佳边界。“核”一词在数学中用来表示加权和或积分的加权函数。支持向量机是一种判别分类器,形式上由分离超平面定义。支持向量机的优化问题具有凸性,保证了支持向量机的全局最优解。支持向量机是非参数模型,因此,随着训练样本数量的增加,复杂性也随之增加。计算成本与类的数量成线性增长。2006年之前,支持向量机是机器学习的最佳通用算法。













