【深度学习】PyTorch:手写数字识别

在这个技术博客中,我们将一起探索如何使用PyTorch来实现一个手写数字识别系统。这个系统将基于经典的MNIST数据集,这是一个包含60,000个训练样本和10,000个测试样本的手写数字(0-9)数据库。通过这个项目,你将了解如何使用PyTorch进行深度学习模型的构建、训练和评估。

1. 环境准备

首先,我们需要确保安装了PyTorch和其他必要的库。你可以使用以下命令安装:

pip install torch torchvision matplotlib

接下来,我们需要导入相关的库:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms

import matplotlib.pyplot as plt

2. 数据集加载

我们将使用torchvision库来加载MNIST数据集。数据集会被转换为PyTorch张量,并且我们会对图像进行归一化处理,使其值在0到1之间。


# 定义数据转换
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5,), (0.5,))
])
 
# 下载并加载训练集
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
 
# 下载并加载测试集
testset = torchvision.datasets.MNIST(root='./data', train=False, download=True, transform=transform)

testloader = torch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhShy23

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值