1、 异步通信原理


1.1. 观察者模式
- 观察者模式(Observer),又叫发布-订阅模式(Publish/Subscribe)
- 定义对象间一种一对多的依赖关系,使得每当一个对象改变状态,则所有依赖于它的对象都会得到通知并自动更新。
- 一个对象(目标对象)的状态发生改变,所有的依赖对象(观察者对象)都将得到通知。
1.2. 生产者消费者模式
- 传统模式
- 生产者直接将消息传递给指定的消费者
- 耦合性特别高,当生产者或者消费者发生变化,都需要重写业务逻辑
- 生产者消费者模式
- **通过一个容器来解决生产者和消费者的强耦合问题。**生产者和消费者彼此之间不直接通讯,而通过阻塞队列来进行通讯
- 数据传递流程
- 生产者消费者模式,即N个线程进行生产,同时N个线程进行消费,两种角色通过内存缓冲区进行通信。
- 生产者负责向缓冲区里面添加数据单元
- 消费者负责从缓冲区里面取出数据单元
- 一般遵循先进先出的原则
1.3. 缓冲区
- 解耦
- 假设生产者和消费者分别是两个类。如果让生产者直接调用消费者的某个方法,那么生产者对于消费者就会产生依赖
- 支持并发
- 生产者直接调用消费者的某个方法过程中函数调用是同步的 。
- 万一消费者处理数据很慢,生产者就会白白糟蹋大好时光
- 支持忙闲不均
- 缓冲区还有另一个好处。如果制造数据的速度时快时慢,缓冲区的好处就体现出来了。
- 当数据制造快的时候,消费者来不及处理,未处理的数据可以暂时存在缓冲区中。
- 等生产者的制造速度慢下来,消费者再慢慢处理掉。
1.4. 数据单元
- 关联到业务对象
- 数据单元必须关联到某种业务对象
- 完整性
- 就是在传输过程中,要保证该数据单元的完整
- 独立性
- 就是各个数据单元之间没有互相依赖
- 某个数据单元传输失败不应该影响已经完成传输的单元;也不应该影响尚未传输的单元。
- 颗粒度
- 数据单元需要关联到某种业务对象。那么数据单元和业务对象应该处于的关系(一对一?一对 多)
- 如果颗粒度过小会增加数据传输的次数
- 如果颗粒度过大会增加单个数据传输的时间,影响后期消费
2、消息系统原理
一个消息系统负责将数据从一个应用传递到另外一个应用,应用只需关注于数据,无需关注数据在两个 或多个应用间是如何传递的。
2.1. 点对点消息传递
- 在点对点消息系统中,消息持久化到一个队列中。此时,将有一个或多个消费者消费队列中的数据。但是一条消息只能被消费一次。
- 当一个消费者消费了队列中的某条数据之后,该条数据则从消息队列中删除。
- 该模式即使有多个消费者同时消费数据,也能保证数据处理的顺序。
- 基于推送模型的消息系统,由消息代理记录消费状态。

2.2. 发布订阅消息传递
- 在发布-订阅消息系统中,消息被持久化到一个topic中。
- 消费者可以订阅一个或多个topic,消费者可以消费该topic中所有的数据,同一条数据可以被多个消费者消费,数据被消费后不会立马删除。
- 在发布-订阅消息系统中,消息的生产者称为发布者,消费者称为订阅者。
- Kafka 采取拉取模型(Poll),由自己控制消费速度,消费者可以按照任意的偏移量进行消费。

1036

被折叠的 条评论
为什么被折叠?



