【公式 + 论文】线段 / 直线相似度度量计算公式

1、中点位置相似度

公式:

PSM ⁡ ( l i , r j ) = max ⁡ ( 1 − Δ x i j 2 + Δ y i j 2 ‾ N , 0 ) \operatorname{PSM}\left(l_{i}, r_{j}\right)=\max \left(1-\frac{\overline{\Delta x_{i j}^{2}+\Delta y_{i j}^{2}}}{N}, 0\right) PSM(li,rj)=max(1NΔxij2+Δyij2,0)

符号含义:

Δ x i j = x ( l i ) − x ( r j ) \Delta x_{i j}=x\left(l_{i}\right)-x\left(r_{j}\right) Δxij=x(li)x(rj) Δ y i j = y ( l i ) − y ( r j ) \Delta y_{i j}=y\left(l_{i}\right)-y\left(r_{j}\right) Δyij=y(li)y(rj) 分别为待匹配线段 l i l_{i} li r j r_{j} rj 中点横、纵坐标的差值;

Δ x i j 2 + Δ y i j 2 ‾ \overline{\Delta x_{i j}^{2}+\Delta y_{i j}^{2}} Δxij2+Δyij2 为线段 l i l_{i} li r j r_{j} rj 中点坐标的距离;

N × N N × N N×N 为图像的分辨率。

2、长度相似度

公式:

LnSM ⁡ ( l i , r j ) = \operatorname{LnSM}\left(l_{i}, r_{j}\right)= LnSM(li,rj)=

1 − [ len ⁡ ( l i ) − len ⁡ ( r i ) ] max ⁡ [ len ⁡ ( l i ) , len ⁡ ( r j ) ] = 1-\frac{\left[\operatorname{len}\left(l_{i}\right)-\operatorname{len}\left(r_{i}\right)\right]}{\max \left[\operatorname{len}\left(l_{i}\right), \operatorname{len}\left(r_{j}\right)\right]}= 1max[len(li),len(rj)][len(li)len(ri)]=

1 − max ⁡ [ len ⁡ ( l i ) , len ⁡ ( r i ) ] − min ⁡ [ len ⁡ ( l i ) , len ⁡ ( r i ) ] max ⁡ [ len ⁡ ( l i ) , len ⁡ ( r j ) ] = 1-\frac{\max \left[\operatorname{len}\left(l_{i}\right), \operatorname{len}\left(r_{i}\right)\right]-\min \left[\operatorname{len}\left(l_{i}\right), \operatorname{len}\left(r_{i}\right)\right]}{\max \left[\operatorname{len}\left(l_{i}\right), \operatorname{len}\left(r_{j}\right)\right]}= 1max[len(li),len(rj)]max[len(li),len(ri)]min[len(li),len(ri)]=

min ⁡ [ len ⁡ ( l i ) , len ⁡ ( r i ) ] max ⁡ [ len ⁡ ( l i ) , len ⁡ ( r j ) ] \frac{\min \left[\operatorname{len}\left(l_{i}\right), \operatorname{len}\left(r_{i}\right)\right]}{\max \left[\operatorname{len}\left(l_{i}\right), \operatorname{len}\left(r_{j}\right)\right]} max[len(li),len(rj)]min[len(li),len(ri)]

符号含义:

len ⁡ ( l i ) \operatorname{len}\left(l_{i}\right) len(li) len ⁡ ( r j ) \operatorname{len}\left(r_{j}\right) len(rj) 分别是线段 l i l_{i} li r j r_{j} rj 的长度。

3、角度相似度

公式:

OSM ⁡ ( l i , r j ) = max ⁡ ( 1 − θ l i − θ r j π / 8 , 0 ) \operatorname{OSM}\left(l_{i}, r_{j}\right)=\max \left(1-\frac{\theta_{l_{i}}-\theta_{r_{j}}}{\pi / 8}, 0\right) OSM(li,rj)=max(1π/8θliθrj,0)

符号含义:

θ l i \theta_{l_{i}} θli θ r j \theta_{r_{j}} θrj 分别为线段 l i l_{i} li r j r_{j} rj 的水平倾角。

4、综合相似度

公式:

LSM ⁡ ( l i , r j ) = ω 1 A + ω 2 B + ω 3 C ∑ 1 3 ω a \operatorname{LSM}\left(l_{i}, r_{j}\right)=\frac{\omega_{1} A+\omega_{2} B+\omega_{3} C}{\sum_{1}^{3} \omega_{a}} LSM(li,rj)=13ωaω1A+ω2B+ω3C

符号含义:

A = PSM ⁡ ( l i , r j ) A=\operatorname{PSM}\left(l_{i}, r_{j}\right) A=PSM(li,rj)
B = LnSM ⁡ ( l i , r j ) B=\operatorname{LnSM}\left(l_{i}, r_{j}\right) B=LnSM(li,rj)
B = OSM ⁡ ( l i , r j ) B=\operatorname{OSM}\left(l_{i}, r_{j}\right) B=OSM(li,rj)
ω 1 = ω 2 = ω 3 = 1 \omega_{1} = \omega_{2} = \omega_{3} = 1 ω1=ω2=ω3=1
ω a \omega_{a} ωa 为各自相似度的权重值。

5、公式出处

[1]崔巍,强文义,陈兴林.基于直线间结构信息的立体视觉图像动态匹配方法[J].控制与决策,2003(05):633-636.DOI:10.13195/j.cd.2003.05.122.cuiw.030.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值