1、中点位置相似度
公式:
PSM ( l i , r j ) = max ( 1 − Δ x i j 2 + Δ y i j 2 ‾ N , 0 ) \operatorname{PSM}\left(l_{i}, r_{j}\right)=\max \left(1-\frac{\overline{\Delta x_{i j}^{2}+\Delta y_{i j}^{2}}}{N}, 0\right) PSM(li,rj)=max(1−NΔxij2+Δyij2,0)
符号含义:
Δ x i j = x ( l i ) − x ( r j ) \Delta x_{i j}=x\left(l_{i}\right)-x\left(r_{j}\right) Δxij=x(li)−x(rj) 和 Δ y i j = y ( l i ) − y ( r j ) \Delta y_{i j}=y\left(l_{i}\right)-y\left(r_{j}\right) Δyij=y(li)−y(rj) 分别为待匹配线段 l i l_{i} li 与 r j r_{j} rj 中点横、纵坐标的差值;
Δ x i j 2 + Δ y i j 2 ‾ \overline{\Delta x_{i j}^{2}+\Delta y_{i j}^{2}} Δxij2+Δyij2 为线段 l i l_{i} li 与 r j r_{j} rj 中点坐标的距离;
N × N N × N N×N 为图像的分辨率。
2、长度相似度
公式:
LnSM ( l i , r j ) = \operatorname{LnSM}\left(l_{i}, r_{j}\right)= LnSM(li,rj)=
1 − [ len ( l i ) − len ( r i ) ] max [ len ( l i ) , len ( r j ) ] = 1-\frac{\left[\operatorname{len}\left(l_{i}\right)-\operatorname{len}\left(r_{i}\right)\right]}{\max \left[\operatorname{len}\left(l_{i}\right), \operatorname{len}\left(r_{j}\right)\right]}= 1−max[len(li),len(rj)][len(li)−len(ri)]=
1 − max [ len ( l i ) , len ( r i ) ] − min [ len ( l i ) , len ( r i ) ] max [ len ( l i ) , len ( r j ) ] = 1-\frac{\max \left[\operatorname{len}\left(l_{i}\right), \operatorname{len}\left(r_{i}\right)\right]-\min \left[\operatorname{len}\left(l_{i}\right), \operatorname{len}\left(r_{i}\right)\right]}{\max \left[\operatorname{len}\left(l_{i}\right), \operatorname{len}\left(r_{j}\right)\right]}= 1−max[len(li),len(rj)]max[len(li),len(ri)]−min[len(li),len(ri)]=
min [ len ( l i ) , len ( r i ) ] max [ len ( l i ) , len ( r j ) ] \frac{\min \left[\operatorname{len}\left(l_{i}\right), \operatorname{len}\left(r_{i}\right)\right]}{\max \left[\operatorname{len}\left(l_{i}\right), \operatorname{len}\left(r_{j}\right)\right]} max[len(li),len(rj)]min[len(li),len(ri)]
符号含义:
len ( l i ) \operatorname{len}\left(l_{i}\right) len(li) 和 len ( r j ) \operatorname{len}\left(r_{j}\right) len(rj) 分别是线段 l i l_{i} li, r j r_{j} rj 的长度。
3、角度相似度
公式:
OSM ( l i , r j ) = max ( 1 − θ l i − θ r j π / 8 , 0 ) \operatorname{OSM}\left(l_{i}, r_{j}\right)=\max \left(1-\frac{\theta_{l_{i}}-\theta_{r_{j}}}{\pi / 8}, 0\right) OSM(li,rj)=max(1−π/8θli−θrj,0)
符号含义:
θ l i \theta_{l_{i}} θli 和 θ r j \theta_{r_{j}} θrj 分别为线段 l i l_{i} li, r j r_{j} rj 的水平倾角。
4、综合相似度
公式:
LSM ( l i , r j ) = ω 1 A + ω 2 B + ω 3 C ∑ 1 3 ω a \operatorname{LSM}\left(l_{i}, r_{j}\right)=\frac{\omega_{1} A+\omega_{2} B+\omega_{3} C}{\sum_{1}^{3} \omega_{a}} LSM(li,rj)=∑13ωaω1A+ω2B+ω3C
符号含义:
A
=
PSM
(
l
i
,
r
j
)
A=\operatorname{PSM}\left(l_{i}, r_{j}\right)
A=PSM(li,rj)
B
=
LnSM
(
l
i
,
r
j
)
B=\operatorname{LnSM}\left(l_{i}, r_{j}\right)
B=LnSM(li,rj)
B
=
OSM
(
l
i
,
r
j
)
B=\operatorname{OSM}\left(l_{i}, r_{j}\right)
B=OSM(li,rj)
ω
1
=
ω
2
=
ω
3
=
1
\omega_{1} = \omega_{2} = \omega_{3} = 1
ω1=ω2=ω3=1
ω
a
\omega_{a}
ωa 为各自相似度的权重值。
5、公式出处
[1]崔巍,强文义,陈兴林.基于直线间结构信息的立体视觉图像动态匹配方法[J].控制与决策,2003(05):633-636.DOI:10.13195/j.cd.2003.05.122.cuiw.030.
333

被折叠的 条评论
为什么被折叠?



