Android利用zxing生成二维码

感谢大佬:https://blog.csdn.net/mountain_hua/article/details/80646089

**gayhub上的zxing可用于生成二维码,识别二维码
gayhub地址:https://github.com/zxing/zxing
此文只是简易教程,文末附有完整代码和demo下载地址,进入正题:

(1)下载并导入zxing.jar包

下载:
zxing.jar下载地址,只需要1积分,方便大家学习下载。
把下载好的zxing.jar放在app的libs文件夹内,如图**
在这里插入图片描述

导入:

进入project structure.如图
在这里插入图片描述
点进去之后,依次进入app——Dependencies——jar dependency:
在这里插入图片描述
选择zxing.jar,导入
在这里插入图片描述

(2)生成二维码:

生成二维码的函数:

public void createQRcodeImage(String url)
    {
        im1=(ImageView)findViewById(R.id.imageView);
        w=im1.getWidth();
        h=im1.getHeight();
        try
        {
            //判断URL合法性
            if (url == null || "".equals(url) || url.length() < 1)
            {
                return;
            }
            Hashtable<EncodeHintType, String> hints = new Hashtable<EncodeHintType, String>();
            hints.put(EncodeHintType.CHARACTER_SET, "utf-8");
            //图像数据转换,使用了矩阵转换
            BitMatrix bitMatrix = new QRCodeWriter().encode(url, BarcodeFormat.QR_CODE, w, h, hints);
            int[] pixels = new int[w * h];
            //下面这里按照二维码的算法,逐个生成二维码的图片,
            //两个for循环是图片横列扫描的结果
            for (int y = 0; y < h; y++)
            {
                for (int x = 0; x < w; x++)
                {
                    if (bitMatrix.get(x, y))
                    {
                        pixels[y * w + x] = 0xff000000;
                    }
                    else
                    {
                        pixels[y * w + x] = 0xffffffff;
                    }
                }
            }
            //生成二维码图片的格式,使用ARGB_8888
            Bitmap bitmap = Bitmap.createBitmap(w, h, Bitmap.Config.ARGB_8888);
            bitmap.setPixels(pixels, 0, w, 0, 0, w, h);
            //显示到我们的ImageView上面
            im1.setImageBitmap(bitmap);
        }
        catch (WriterException e)
        {
            e.printStackTrace();
        }
    }

设置两种转换方式,默认转换/自定义转换:

        Button bt=(Button)findViewById(R.id.button);
        bt.setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View v) {
                createQRcodeImage("https://blog.csdn.net/mountain_hua");//url为我的csdn博客地址
            }
        });
 
        Button bt2=(Button)findViewById(R.id.button2);
        bt2.setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View v) {
                EditText editText=(EditText)findViewById(R.id.editText);
                createQRcodeImage(editText.getText().toString());//自定义转换内容
            }
        });

默认转换为我的博客: 自定义转换:
在这里插入图片描述在这里插入图片描述

(3)识别二维码

识别二维码需要一个RGBLuminanceSource类:

//识别图片所需要的RGBLuminanceSource类
    public class RGBLuminanceSource extends LuminanceSource {
 
        private byte bitmapPixels[];
 
        protected RGBLuminanceSource(Bitmap bitmap) {
            super(bitmap.getWidth(), bitmap.getHeight());
 
            // 首先,要取得该图片的像素数组内容
            int[] data = new int[bitmap.getWidth() * bitmap.getHeight()];
            this.bitmapPixels = new byte[bitmap.getWidth() * bitmap.getHeight()];
            bitmap.getPixels(data, 0, getWidth(), 0, 0, getWidth(), getHeight());
 
            // 将int数组转换为byte数组,也就是取像素值中蓝色值部分作为辨析内容
            for (int i = 0; i < data.length; i++) {
                this.bitmapPixels[i] = (byte) data[i];
            }
        }
 
        @Override
        public byte[] getMatrix() {
            // 返回我们生成好的像素数据
            return bitmapPixels;
        }
 
        @Override
        public byte[] getRow(int y, byte[] row) {
            // 这里要得到指定行的像素数据
            System.arraycopy(bitmapPixels, y * getWidth(), row, 0, getWidth());
            return row;
        }
    }
 

识别二维码的函数:

     //识别二维码的函数
    public void recogQRcode(ImageView imageView){
        Bitmap QRbmp = ((BitmapDrawable) (imageView).getDrawable()).getBitmap();   //将图片bitmap化
        int width = QRbmp.getWidth();
        int height = QRbmp.getHeight();
        int[] data = new int[width * height];
        QRbmp.getPixels(data, 0, width, 0, 0, width, height);    //得到像素
        RGBLuminanceSource source = new RGBLuminanceSource(QRbmp);   //RGBLuminanceSource对象
        BinaryBitmap bitmap1 = new BinaryBitmap(new HybridBinarizer(source));
        QRCodeReader reader = new QRCodeReader();
        Result re = null;
        try {
            //得到结果
            re = reader.decode(bitmap1);
        } catch (NotFoundException e) {
            e.printStackTrace();
        } catch (ChecksumException e) {
            e.printStackTrace();
        } catch (FormatException e) {
            e.printStackTrace();
        }
        //Toast出内容
        Toast.makeText(MainActivity.this,re.getText(),Toast.LENGTH_SHORT).show();
 
        //利用正则表达式判断内容是否是URL,是的话则打开网页
        String regex = "(((https|http)?://)?([a-z0-9]+[.])|(www.))"
                + "\\w+[.|\\/]([a-z0-9]{0,})?[[.]([a-z0-9]{0,})]+((/[\\S&&[^,;\u4E00-\u9FA5]]+)+)?([.][a-z0-9]{0,}+|/?)";//设置正则表达式
 
        Pattern pat = Pattern.compile(regex.trim());//比对
        Matcher mat = pat.matcher(re.getText().trim());
        if (mat.matches()){
            Uri uri = Uri.parse(re.getText());
            Intent intent = new Intent(Intent.ACTION_VIEW, uri);//打开浏览器
            startActivity(intent);
        }
 
    }

下面看识别效果:

这是识别URL的结果: 这是识别一般文字的结果:
在这里插入图片描述在这里插入图片描述

(4)完整代码:

Mainactivity:

package mountain_hua.learn_zxing;
 
import android.content.Intent;
import android.graphics.Bitmap;
import android.graphics.drawable.BitmapDrawable;
import android.net.Uri;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.ImageView;
import android.widget.Toast;
 
import com.google.zxing.BarcodeFormat;
import com.google.zxing.BinaryBitmap;
import com.google.zxing.ChecksumException;
import com.google.zxing.EncodeHintType;
import com.google.zxing.FormatException;
import com.google.zxing.LuminanceSource;
import com.google.zxing.NotFoundException;
import com.google.zxing.Result;
import com.google.zxing.WriterException;
import com.google.zxing.common.BitMatrix;
import com.google.zxing.common.HybridBinarizer;
import com.google.zxing.qrcode.QRCodeReader;
import com.google.zxing.qrcode.QRCodeWriter;
 
import java.util.Hashtable;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
 
public class MainActivity extends AppCompatActivity {
 
    private ImageView im1;  //imageview图片
    private int w,h;        //图片宽度w,高度h
    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
 
        Button bt=(Button)findViewById(R.id.button);
        bt.setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View v) {
                createQRcodeImage("https://blog.csdn.net/mountain_hua");//url为我的csdn博客地址
            }
        });
 
        Button bt2=(Button)findViewById(R.id.button2);
        bt2.setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View v) {
                EditText editText=(EditText)findViewById(R.id.editText);
                createQRcodeImage(editText.getText().toString());//自定义转换内容
            }
        });
 
        Button bt3=(Button)findViewById(R.id.button3);
        bt3.setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View v) {
                im1=(ImageView)findViewById(R.id.imageView);
                recogQRcode(im1);
            }
        });
 
    }
 
    //转换成二维码QRcode的函数。参数为一个字符串
    public void createQRcodeImage(String url)
    {
        im1=(ImageView)findViewById(R.id.imageView);
        w=im1.getWidth();
        h=im1.getHeight();
        try
        {
            //判断URL合法性
            if (url == null || "".equals(url) || url.length() < 1)
            {
                return;
            }
            Hashtable<EncodeHintType, String> hints = new Hashtable<EncodeHintType, String>();
            hints.put(EncodeHintType.CHARACTER_SET, "utf-8");
            //图像数据转换,使用了矩阵转换
            BitMatrix bitMatrix = new QRCodeWriter().encode(url, BarcodeFormat.QR_CODE, w, h, hints);
            int[] pixels = new int[w * h];
            //下面这里按照二维码的算法,逐个生成二维码的图片,
            //两个for循环是图片横列扫描的结果
            for (int y = 0; y < h; y++)
            {
                for (int x = 0; x < w; x++)
                {
                    if (bitMatrix.get(x, y))
                    {
                        pixels[y * w + x] = 0xff000000;
                    }
                    else
                    {
                        pixels[y * w + x] = 0xffffffff;
                    }
                }
            }
            //生成二维码图片的格式,使用ARGB_8888
            Bitmap bitmap = Bitmap.createBitmap(w, h, Bitmap.Config.ARGB_8888);
            bitmap.setPixels(pixels, 0, w, 0, 0, w, h);
            //显示到我们的ImageView上面
            im1.setImageBitmap(bitmap);
        }
        catch (WriterException e)
        {
            e.printStackTrace();
        }
    }
 
    //识别二维码的函数
    public void recogQRcode(ImageView imageView){
        Bitmap QRbmp = ((BitmapDrawable) (imageView).getDrawable()).getBitmap();   //将图片bitmap化
        int width = QRbmp.getWidth();
        int height = QRbmp.getHeight();
        int[] data = new int[width * height];
        QRbmp.getPixels(data, 0, width, 0, 0, width, height);    //得到像素
        RGBLuminanceSource source = new RGBLuminanceSource(QRbmp);   //RGBLuminanceSource对象
        BinaryBitmap bitmap1 = new BinaryBitmap(new HybridBinarizer(source));
        QRCodeReader reader = new QRCodeReader();
        Result re = null;
        try {
            //得到结果
            re = reader.decode(bitmap1);
        } catch (NotFoundException e) {
            e.printStackTrace();
        } catch (ChecksumException e) {
            e.printStackTrace();
        } catch (FormatException e) {
            e.printStackTrace();
        }
        //Toast出内容
        Toast.makeText(MainActivity.this,re.getText(),Toast.LENGTH_SHORT).show();
 
        //利用正则表达式判断内容是否是URL,是的话则打开网页
        String regex = "(((https|http)?://)?([a-z0-9]+[.])|(www.))"
                + "\\w+[.|\\/]([a-z0-9]{0,})?[[.]([a-z0-9]{0,})]+((/[\\S&&[^,;\u4E00-\u9FA5]]+)+)?([.][a-z0-9]{0,}+|/?)";//设置正则表达式
 
        Pattern pat = Pattern.compile(regex.trim());//比对
        Matcher mat = pat.matcher(re.getText().trim());
        if (mat.matches()){
            Uri uri = Uri.parse(re.getText());
            Intent intent = new Intent(Intent.ACTION_VIEW, uri);//打开浏览器
            startActivity(intent);
        }
 
    }
 
    //识别图片所需要的RGBLuminanceSource类
    public class RGBLuminanceSource extends LuminanceSource {
 
        private byte bitmapPixels[];
 
        protected RGBLuminanceSource(Bitmap bitmap) {
            super(bitmap.getWidth(), bitmap.getHeight());
 
            // 首先,要取得该图片的像素数组内容
            int[] data = new int[bitmap.getWidth() * bitmap.getHeight()];
            this.bitmapPixels = new byte[bitmap.getWidth() * bitmap.getHeight()];
            bitmap.getPixels(data, 0, getWidth(), 0, 0, getWidth(), getHeight());
 
            // 将int数组转换为byte数组,也就是取像素值中蓝色值部分作为辨析内容
            for (int i = 0; i < data.length; i++) {
                this.bitmapPixels[i] = (byte) data[i];
            }
        }
 
        @Override
        public byte[] getMatrix() {
            // 返回我们生成好的像素数据
            return bitmapPixels;
        }
 
        @Override
        public byte[] getRow(int y, byte[] row) {
            // 这里要得到指定行的像素数据
            System.arraycopy(bitmapPixels, y * getWidth(), row, 0, getWidth());
            return row;
        }
    }
 
}

布局文件activity_main:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
    xmlns:app="http://schemas.android.com/apk/res-auto"
    android:orientation="vertical" android:layout_width="match_parent"
    android:layout_height="match_parent">
 
    <ImageView
        android:id="@+id/imageView"
        android:layout_width="300dp"
        android:layout_height="300dp"
        app:srcCompat="@android:color/background_light" />
 
    <Button
        android:id="@+id/button"
        android:layout_width="match_parent"
        android:layout_height="wrap_content"
        android:textAllCaps="false"
        android:text="转换成二维码(mountain_hua的博客)" />
 
    <EditText
        android:id="@+id/editText"
        android:layout_width="match_parent"
        android:layout_height="wrap_content"
        android:ems="10"
        android:hint="输入要转换的内容"
        android:inputType="textPersonName" />
 
    <Button
        android:id="@+id/button2"
        android:layout_width="match_parent"
        android:layout_height="wrap_content"
        android:text="自定义转换" />
 
    <Button
        android:id="@+id/button3"
        android:layout_width="match_parent"
        android:layout_height="wrap_content"
        android:text="识别二维码" />
</LinearLayout>

demo下载地址:https://download.csdn.net/download/mountain_hua/10471127
本文参考:
https://www.jianshu.com/p/20db116b6279
https://blog.csdn.net/qq_29634351/article/details/78688315
http://www.cnblogs.com/mythou/p/3280023.html
https://www.2cto.com/kf/201603/495847.html

续:在二维码中间填充图片logo

首先说明,二维码是有一定的纠错功能的,二维条码因穿孔、污损等引起局部损坏时,照样可以正确得到识读,损毁面积达30%仍可恢复信息。但三个角上的“回”字及周围的底色不要改变,这是用于二维码定位的,最好是填充图片在中间,越小越好。

下面进入正题:

填充图片函数:

    //给二维码添加图片
    //第一个参数为原二维码,第二个参数为添加的logo
    private static Bitmap addLogo(Bitmap src, Bitmap logo) {
        //如果原二维码为空,返回空
        if (src ==null ) {
            return null;
        }
        //如果logo为空,返回原二维码
        if (src ==null ||logo ==null) {
            return src;
        }
 
        //这里得到原二维码bitmap的数据
        int srcWidth = src.getWidth();
        int srcHeight = src.getHeight();
        //logo的Width和Height
        int logoWidth = logo.getWidth();
        int logoHeight = logo.getHeight();
 
        //同样如果为空,返回空
        if (srcWidth == 0 || srcHeight == 0) {
            return null;
        }
        //同样logo大小为0,返回原二维码
        if (logoWidth == 0 || logoHeight == 0) {
            return src;
        }
 
        //logo大小为二维码整体大小的1/5,也可以自定义多大,越小越好
        //二维码有一定的纠错功能,中间图片越小,越容易纠错
        float scaleFactor = srcWidth * 1.0f / 5 / logoWidth;
        Bitmap bitmap = Bitmap.createBitmap(srcWidth, srcHeight, Bitmap.Config.ARGB_8888);
        try {
            Canvas canvas = new Canvas(bitmap);
            canvas.drawBitmap(src, 0, 0, null);
            canvas.scale(scaleFactor, scaleFactor, srcWidth / 2, srcHeight / 2);
            canvas.drawBitmap(logo, (srcWidth - logoWidth) / 2, (srcHeight - logoHeight) / 2,null );
 
            canvas.save(Canvas.ALL_SAVE_FLAG);
            canvas.restore();
        } catch (Exception e) {
            bitmap = null;
            e.getStackTrace();
        }
 
        return bitmap;
    }

然后在button中设置监听:

Button bt4=(Button)findViewById(R.id.button4);
        bt4.setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View v) {
                im1=(ImageView)findViewById(R.id.imageView);
                Bitmap QRbmp = ((BitmapDrawable) (im1).getDrawable()).getBitmap();   //将图片bitmap化
                //将drawable里面的图片bitmap化
                Bitmap logo = BitmapFactory.decodeResource(getResources(), R.drawable.ic_launcher);
                im1.setImageBitmap(addLogo(QRbmp,logo));
            }
        });

效果如下:
在这里插入图片描述在这里插入图片描述
附完整版demo(带填充图片):https://download.csdn.net/download/mountain_hua/10473011


小白补充:
https://www.jianshu.com/p/6607e69b1121
https://www.jb51.net/article/102494.htm


感谢大佬:https://www.jianshu.com/p/6607e69b1121

ZXing应用详解

现在的项目中需要加上二维码扫描,虽然使用了第三方库,也还好用,但是对这部分只是还是比较感兴趣,所以研究一下。

分类

二维码处理分为两部分:编码与解码

编码:使用字符串生成图片。

解码:解析图片中的字符串。

首先明确一个概念:二维码图片存在的形式非常多,文件、纸张、手机、电脑屏幕。在不同的平台上存在的形式是不一样的。

ZXing介绍

摘自百度百科

二维条码/二维码(2-dimensional bar code)是用某种特定的几何图形按一定规律在平面(二维方向上)分布的黑白相间的图形记录数据符号信息的;在代码编制上巧妙地利用构成计算机内部逻辑基础的“0”、“1”比特流的概念,使用若干个与二进制相对应的几何形体来表示文字数值信息,通过图象输入设备或光电扫描设备自动识读以实现信息自动处理:它具有条码技术的一些共性:每种码制有其特定的字符集;每个字符占有一定的宽度;具有一定的校验功能等。同时还具有对不同行的信息自动识别功能、及处理图形旋转变化点。

目前的认知告诉我们,二维码是以正方形的形式存在,以类似于二进制的方式存储数据。

在Zxing中,使用BitMatrix来描述一个二维码,在其内部存储一个看似boolean值的矩阵数组。这个类很好的抽象了二维码。

转换成图片

只使用zxing-core包,那么我们最多可以得到一个BitMatrix, 我们想要看见二维码,则还需要将其转换成一个图片,而图片在不同的平台则是以不同的形式存在的。如png文件, jpg文件、Android的Bitmap, Java SE的 BufferedImage.

具体转换成图片的方式,不同平台有不同的方法,后面会详细总结,这里只是尽快明确一下概念。

生成二维码介绍

zxing将生成图形编码的方式抽象成了一个类com.google.zxing.Writer, 在实现类中不仅仅生成二维码,还可以生成条形码等其他图形编码

Writer
BitMatrix encode(String contents, BarcodeFormat format, int width, int height) throws WriterException
BitMatrix encode(String contents, BarcodeFormat format, int width, int height, Map<EncodeHintType,?> hints) throws WriterException;

如上所示,Writer共有两个方法,都是用于生成二维码。方法参数说明如下

参数说明
String contents编码的内容
BarcodeFormat format编码的方式(二维码、条形码...)
int width首选的宽度
int height首选的高度
Map<EncodeHintType,?> hints编码时的额外参数

从上面可以看出,除了我们常规认为的编码需要内容之外,还有其他不少的信息,如编码的方式(这里只探讨二维码),二维码的首选宽高(首选的意思是:生成的图片的参考尺寸,如二维码是正方形,但给一个矩形,则会留白,条形码为矩形,设置一个正方形,则也会留白)。

下面详细讨论一下额外的参数,虽然不一定所有都用到,但是尽量讨论一些可能会用到的参数。编码额外的参数是以一个Map<EncodeHintType, ?>存在的,key为EncodeHintType枚举,那么可以看到所有的参数类型。

参数说明
ERROR_CORRECTION容错率,指定容错等级,例如二维码中使用的ErrorCorrectionLevel, Aztec使用Integer
CHARACTER_SET编码集
DATA_MATRIX_SHAPE指定生成的数据矩阵的形状,类型为SymbolShapeHint
MARGIN生成条码的时候使用,指定边距,单位像素,受格式的影响。类型Integer, 或String代表的数字类型
PDF417_COMPACT指定是否使用PDF417紧凑模式(具体含义不懂)类型Boolean
PDF417_COMPACTION指定PDF417的紧凑类型
PDF417_DIMENSIONS指定PDF417的最大最小行列数
AZTEC_LAYERSaztec编码相关,不理解
QR_VERSION指定二维码版本,版本越高越复杂,反而不容易解析

从上面的参数表格可以看出,适用于二维码的有:ERROR_CORRECTION, CHARACTER_SET, MARGIN, QR_VERSION.

参数使用说明
ERROR_CORRECTION分为四个等级:L/M/Q/H, 等级越高,容错率越高,识别速度降低。例如一个角被损坏,容错率高的也许能够识别出来。通常为H
CHARACTER_SET编码集,通常有中文,设置为 utf-8
MARGIN默认为4, 实际效果并不是填写的值,一般默认值就行
QR_VERSION通常不变,设置越高,反而不好用

下面是最简化的生成二维码的代码

/**
 * 生成二维码
 *
 * @param contents 二维码内容
 * @return 二维码的描述对象 BitMatrix
 * @throws WriterException 编码时出错
 */
private BitMatrix encode(String contents) throws WriterException {
    final Map<EncodeHintType, Object> hints = new HashMap<>();
    hints.put(EncodeHintType.ERROR_CORRECTION, ErrorCorrectionLevel.H);
    hints.put(EncodeHintType.CHARACTER_SET, "utf-8");
    return new QRCodeWriter().encode(contents, BarcodeFormat.QR_CODE, 320, 320, hints);
}

没错,就是这么简单。但是我们得到的是一个BitMatrix, 如果需要显示出来则要根据不同平台来处理。

BitMatrix 转换成图片

首先明确Java SE平台和Android平台的区别:Android平台移除关于swing部分的代码,所以如果SE平台使用到这部分代码,Android平台则不能用,不幸的是,官方的代码恰恰用到了这部分。

明确另外一个概念:图片在一个平台的存在形式有两种,内存和文件。虽然文件在不同平台通用,但是转换成文件的过程却不是通用的。如Android中将Bitmap转换成图片文件,SE中将BufferedImage转换成图片文件。所以实际上,最重要的是将BitMatrix转换成在内存中图片的存在形式。

Java SE平台

BitMatrix转换成BufferedImage.

在官方提供的zxing-javase包中已经有了相应的方法。下面是示例代码:

BufferedImage bufferedImage = MatrixToImageWriter.toBufferedImage(bitMatrix, new MatrixToImageConfig(Color.BLACK.getRGB(), Color.WHITE.getRGB()));

方法原型为:

public static BufferedImage toBufferedImage(BitMatrix matrix, MatrixToImageConfig config)

关于其中的参数,如下表格所示:

参数说明
BitMatrix二维码的描述对象
MatrixToImageConfig二维码转换成BufferedImage的配置参数

MatrixToImageConfig对象中只有两个域onColoroffColor, 文章开头提到二维码类似于二进制,这样的配置表示生成的BufferedImage用两种颜色来表示二维码上的开关。

BitMatrix转换成图片文件

在官方提供的zxing-javase包中实际上有将BitMatrix转换成图片文件的方法,不过实际上是先将BitMatrix转换成BufferedImage, 然后将其转换成图片文件。

转换方法(javax.imageio.ImageIO)

public static boolean write(RenderedImage im, String formatName, File output) throws IOException

参数说明:

参数说明
RenderedImage im BufferedImage实现了RenderedImage接口
String formatName图片文件格式,通常使用 png
File output图片文件

上面两步结合起来就直接将BitMatrix转换成文件了,下面是MatrixToImageWriter的方法(类型Path表示文件路径,可以使用File.toPath()方法得到)

public static void writeToPath(BitMatrix matrix, String format, Path file, MatrixToImageConfig config) throws IOException

Android 平台

类似的,在Android中也是先将BitMatrix转换成Bitmap, 然后再写入到文件中。

Bitmap写入到文件中则非常熟悉了,如下所示:

Bitmap.compress(CompressFormat format, int quality, OutputStream stream)

其中的参数就不再解释了,主要需要讨论的是将BitMatrix转换成Bitmap

在讨论BitMatrixBitmap的转换之前,先研究一下两者的内部结构。

BitMatrix

翻译:BitMatrix表示位数组的二维矩阵。而它内部则是使用一维int数组来实现的,一个int数组有32位。不过比较特别的是,每一行都是由一个新的int值开始,如果列数不是32的倍数,一行最后一个int值中有没有用到的位。另外位是从int值的最小位开始排的,这是为了和com.google.zxing.common.BitArray更好的转换。

不关心其内部实现,在其抽象的数据结构中,x表示列数,y表示行数,可以通过BitMatrix.get(int x, int y)获取该位置是否为1(开).

BitMatrix中几个可能应该熟悉方法如下

方法说明
public boolean get(int x, int y)获取(x, y)的位值,true表示黑色
public void set(int x, int y)设置(x, y)的位值为true
public void unset(int x, int y)设置(x, y)的位值为false
public void flip(int x, int y)对(x, y)的位值做非运算
public BitMatrix(int width, int height)构造函数,指定宽高

另外说明一下com.google.zxing.common.BitArray这个类,这个类数据结构和BitMatrix的一行是一样的,使用int数组来表示一维位数组,同样的,最后一位int值可能有部分位没有用到。也同样的,位是从int值的最小位开始排列。

Bitmap

Bitmap内部是使用C实现的,所以不能直观看到,不过可以猜测到,其内部应该使用的是一维int数组来实现的,一个int值就表示一个点的颜色。

下面列举一些可能用到的一些方法

方法说明
public static Bitmap createBitmap(int width, int height, Config config)构造方法,创建一个透明的Bitmap
public void setPixels(@ColorInt int[] pixels, int offset, int stride, int x, int y, int width, int height)使用数组中的颜色替换Bitmap的像素点的颜色
public void setPixel(int x, int y, @ColorInt int color)设置Bitmap中指定像素点的颜色值

只列举上面几个方法是因为跟我们的理解和使用比较密切。

BitMatrix转换成Bitmap

从前面的理解,我们可以看出,实际上BitMatrix转换成Bitmap就是将其所代表的点的开关用颜色来表示。默认情况下,我们习惯使用黑色代表开,白色代表关。我们需要创建一个和BitMatrix长宽“相等”的Bitmap, 在转换过程中,我们发现BitMatrix某一个位置是开,我们则设置Bitmap相应位置的颜色为开的颜色,反之同理。(当然我们也可以根据特殊需求修改其中的颜色)

代码示例

private Bitmap bitMatrixToBitmap(BitMatrix bitMatrix) {
    final int width = bitMatrix.getWidth();
    final int height = bitMatrix.getHeight();
final int[] pixels = new int[width * height];
for (int y = 0; y &lt; height; y++) {
    for (int x = 0; x &lt; width; x++) {
        pixels[y * width + x] = bitMatrix.get(x, y) ? 0xFF000000 : 0xFFFFFFFF;
    }
}
Bitmap bitmap = Bitmap.createBitmap(width, height, Bitmap.Config.ARGB_8888);
bitmap.setPixels(pixels, 0, width, 0, 0, width, height);

return bitmap;

}

上面分为三步:

  1. 创建一个一维int数组存放转换后的颜色值
  2. 根据BitMatrix中的位值设置相应像素点的颜色值
  3. 创建一个“相同”大小的Bitmap, 使用代表颜色的数组为其赋值

注意:颜色值中前两位默认为00, 这样表示透明,所以一般都是要设置为FF, 不然在调试过程中就比较坑。

关于Bitmap.setPixels(@ColorInt int[] pixels, int offset, int stride, int x, int y, int width, int height)这个方法其中的参数比较多,详细说明一下

参数说明
int[] pixels像素点颜色数组
int offset从偏移颜色数组第一个像素多少开始读起
int stride每隔多少个点跳行,通常和宽度相同,不过也可以更大,设置为负值
int xBitmap接收值的x轴起点
int yBitmap接收值的y轴起点
int width每一行复制多少颜色点
int height一个复制多少行

因为考虑到像素点颜色数组和Bitmap大小本身存在不同所以才有这些参数,实际上,像素点颜色数组的大小和Bitmap的大小是相同的。那么其中的参数分别是:像素点颜色数组、0表示不偏移,直接从第一位复制、Bitmap宽度,复制完刚好一行则开始从下一个点开始进行复制下一行、0表示从左上角开始复制、0表示从左上角开始复制、Bitmap的宽度表示刚好复制到整个Bitmap, Bitmap的宽度表示刚好复制到整个Bitmap

解析二维码介绍

zxing将解析图形编码的方式抽象成了一个接口com.google.zxing.Reader, 实现类中可以解析多种图形编码。

Reader
Result decode(BinaryBitmap image) throws NotFoundException, ChecksumException, FormatException
Result decode(BinaryBitmap image, Map<DecodeHintType,?> hints) throws NotFoundException, ChecksumException, FormatException
void reset()

Reader共有三个方法,decode方法用于解析图形编码,返回一个解析结果;reset将重置解析器的状态,便于复用。

关于encode的参数和返回值:

参数说明
BinaryBitmap image被解析的图片
Map<DecodeHintType, ?> hints帮助解析的一些额外的参数
Result解析的结果

关于解码时额外的参数

参数说明
OTHER未指定作用,应用自定义,Object类型
PURE_BARCODEBoolean类型,指定图片是一个纯粹的二维码
POSSIBLE_FORMATS可能的编码格式,List类型
TRY_HARDER花更多的时间用于寻找图上的编码,优化准确性,但不优化速度,Boolean类型
CHARACTER_SET编码字符集,通常指定UTF-8
ALLOWED_LENGTHS允许的编码数据长度 - 拒绝多余的数据。不懂这是什么,int[]类型
ASSUME_CODE_39_CHECK_DIGITCODE 39 使用,不关心
ASSUME_GS1假设使用GS1编码来解析,不关心
RETURN_CODABAR_START_ENDCODABAR编码使用,不关心
NEED_RESULT_POINT_CALLBACK当解析到可能的结束点时进行回调
ALLOWED_EAN_EXTENSIONS允许EAN或UPC编码有额外的长度,不关心

从上面的参数表格可以看出,适用于二维码的有:PURE_BARCODE, POSSIBLE_FORMATS, TRY_HARDER, CHARACTER_SET. 不过一般不会使用PURE_BARCODE, POSSIBLE_FORMATS设置为BarcodeFormat.QR_CODE, CHARACTER_SET设置为utf-8.

下面是最简单的解析二维码的代码

/**
 * 解析二维码
 *
 * @param binaryBitmap 被解析的图形对象
 * @return 解析的结果
 */
private String decode(BinaryBitmap binaryBitmap) {
    try {
        Map<DecodeHintType, Object> hints = new HashMap<>();
        hints.put(DecodeHintType.CHARACTER_SET, "utf-8");
        hints.put(DecodeHintType.TRY_HARDER, Boolean.TRUE);
        hints.put(DecodeHintType.POSSIBLE_FORMATS, BarcodeFormat.QR_CODE);
    Result result = new QRCodeReader().decode(binaryBitmap, hints);

    return result.getText();
} catch (NotFoundException | ChecksumException | FormatException e) {
    e.printStackTrace();
    return null;
}

}

解析时,我们需要一个BinaryBitmap, 其只有一个构造器,接受一个com.google.zxing.Binarizer对象,所以无论是在哪个平台,无论图片是以什么样的形式存在的(文件、内存、Bitmap、BufferedImage),都需要提供一个Binarizer对象,将图片转换成一个BinaryBitmap.

BinaryBitmap

翻译:这是在ZXing中用于代表一个位数据的核心位图类。Reader对象接受一个BinaryBitmap并试图对它进行解码。

这个类使用了final修饰,只有一个接受Binarizer对象的构造器,并在其内部实质上也只有一个Binarizer对象,其所有方法都是代理到Binarizer或是Binarizer构造的一个BitMatrix对象。

Binarizer

这个类使用了abstract修饰。

翻译:这个类在层次上提供了一组方法用于将亮度数据(luminance data)转换成一个位数据。它允许算法多种多样,例如允许服务器使用非常耗资源的阈值计算,允许手机使用比较快的算法。它也允许实现类多样化,例如安卓上使用JNI,其他平台使用备选的版本。

摘自百度知道

PS解释:“阈值”命令将灰度或彩色图像转换为高对比度的黑白图像。您可以指定某个色阶作为阈值。所有比阈值亮的像素转换为白色;而所有比阈值暗的像素转换为黑色。“阈值”命令对确定图像的最亮和最暗区域很有用。

我的解释,就是拿黑白2色去阐述你的图片,是可调节的。

单词Binarizer的翻译:二值化。通常在图像处理上使用比较多,可以和阈值计算处理看做类似的概念,因为对于目前的图形编码来说,一张图片只认为有两种颜色,表示开关。所以需要将一张彩色的图片转换成一张黑白色的图。这个过程就成为二值化(Binarizer).

这个类只有一个使用protected修饰的构造器,这个构造器只接受一个LuminanceSource对象。其所有的方法都是抽象的。

Binarizer有两个子类,com.google.zxing.common.GlobalHistogramBinarizercom.google.zxing.common.HybridBinarizer.

翻译:GlobalHistogramBinarizer, 全局直方图二值化。这个Binarizer的实现类使用了早期的ZXing全局直方图方法。它适合没有足够CPU和内存的低端手机来使用本地阈值算法。但它选择了全部的黑点来计算,因此不能处理阴影和渐变两种情况。快速的手机设备和所有的桌面应用应该使用HybridBinarizer.

翻译:HybridBinarizer, 混合型二值化。这个Binarizer的实现类使用了本地阈值算法,比GlobalHistogramBinarizer要慢,相对而言也比较精准。它专门为以白色为背景的连续黑色块二维码图像解析而设计,也更适合用来解析具有严重阴影和渐变的二维码图像。(部分参考文章zxing扫描二维码和识别图片二维码及其优化策略

两者的大概意思是GlobalHistogramBinarizer适合CPU和内存比较差的低端手机,解析效果没有HybridBinarizer好,但是HybridBinarizer耗费的资源更多,解析速度也稍慢,不过对于目前市面上的手机CPU和内存都不会太差,所以大可以直接使用HybridBinarizer. 另外,HybridBinarizer继承自GlobalHistogramBinarizer, 两者都只有一个接受一个LuminanceSource的构造器。

LuminanceSource

翻译:这个类层次的目的是抽象在不同平台上的位图,实现成一个标准的接口用于请求灰度的亮度值。这个接口值提供不可改变的方法;因此剪切或者旋转时将创造一个副本(不复用)。这样是为了保证一个Reader不能修改原亮度数据,而且让他对于在处理链的其他Reader保持一个未知的状态。

对于这个类的作用还不太清楚,不过我们可以知道的是,我们需要将在不同平台的图片对象转换成LuminanceSource对象,这样就可以交给Zxing来进行解析了。

在zxing-core包中,有两个LuminanceSource的实现类,com.google.zxing.RGBLuminanceSourcecom.google.zxing.PlanarYUVLuminanceSource. 在zxing-javase包中,有一个实现类com.google.zxing.client.j2se.BufferedImageLuminanceSource.

RGBLuminanceSource, 这个类用于帮助解析图片文件,这个图片文件是从一个ARGB的像素数组转换成一个RGB数据的。但是不支持旋转。

PlanarYUVLuminanceSource, 这个对象继承自LuminanceSource, 多从相机设备中返回的YUV数据数组转换得到,可以选择性的将YUV的完整数据剪切其中一部分用于解析(具体参数可以查看其构造函数)。这样可以用于取出边界外多余的像素用于加快解析速度。

Java SE平台

既然官方在zxing-core包中提供了BufferedImageLuminanceSource, 我们直接使用即可。它接受一个BufferedImage作为构造器参数,也有一个重载构造器,用于取得BufferedImage的部分来进行解析。

下面代码展示解析一个图片文件上的二维码

/**
 * 解析图片文件上的二维码
 *
 * @param imageFile 图片文件
 * @return 解析的结果,null表示解析失败
 */
private String decode(File imageFile) {
    try {
        BufferedImage image = ImageIO.read(imageFile);
        LuminanceSource luminanceSource = new BufferedImageLuminanceSource(image);
        Binarizer binarizer = new HybridBinarizer(luminanceSource);
    BinaryBitmap binaryBitmap = new BinaryBitmap(binarizer);

    Map&lt;DecodeHintType, Object&gt; hints = new HashMap&lt;&gt;();
    hints.put(DecodeHintType.CHARACTER_SET, "utf-8");
    hints.put(DecodeHintType.TRY_HARDER, Boolean.TRUE);
    hints.put(DecodeHintType.POSSIBLE_FORMATS, BarcodeFormat.QR_CODE);

    Result result = new QRCodeReader().decode(binaryBitmap, hints);

    return result.getText();
} catch (Exception e) {
    e.printStackTrace();
    return null;
}

}

Android 平台

官方包中并没有一个所谓的BitmapLuminanceSource, 而网上也有定义这样一个类,但是实现效果并不好,多是使用Bitmap构造一个RGBLuminanceSource. 下面是演示代码

/**
 * 解析Bitmap中的二维码
 *
 * @param bitmap
 * @return 解析结果,null表示解析失败
 */
private String decode(Bitmap bitmap) {
    int width = bitmap.getWidth();
    int height = bitmap.getHeight();
    final int[] pixels = new int[width * height];
    bitmap.getPixels(pixels, 0, width, 0, 0, width, height);
    RGBLuminanceSource luminanceSource = new RGBLuminanceSource(width, height, pixels);
    BinaryBitmap binaryBitmap = new BinaryBitmap(new HybridBinarizer(luminanceSource));
try {
    final Map&lt;DecodeHintType, Object&gt; hints = new HashMap&lt;&gt;();
    hints.put(DecodeHintType.CHARACTER_SET, "utf-8");
    hints.put(DecodeHintType.POSSIBLE_FORMATS, BarcodeFormat.QR_CODE);
    hints.put(DecodeHintType.TRY_HARDER, Boolean.TRUE);
    Result result = new QRCodeReader().decode(binaryBitmap, hints);

    return result.toString();
} catch (Exception e) {
    e.printStackTrace();
    return null;
}

}

不过使用相机扫描解析二维码却不同,在Android API 21以下使用android.hardware.Camera来进行扫描时,通常在预览状态下得到的是一个byte数组,这时,就比较容易用来构造一个com.google.zxing.PlanarYUVLuminanceSource, 具体如何使用,在讨论到相机时会再说明。

标注

Demo地址ZxingDemo

使用到的jar包:core-3.3.0.jar, javase-3.3.0.jar

参考

zxing扫描二维码和识别图片二维码及其优化策略

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页