sklearn.decomposition.PCA算法解析与应用
目录算法功能算法参数方法实例 鸢尾花数据分类演示算法功能资源来源于官网主成分分析(PCA)就是在尽可能保留数据特征的情况下,降低数据的维度。这是怎么实现的呢?在sklearn.decomposition.PCA中,使用的是SVD(奇异值分解)的方法进行降维。SVD的基本思想:设有一个m×n的矩阵A(设m<n),可以将它分解为Am×n=Um×m· Λ ·Vn×n。其中U和V是正交矩阵,Λ是对角矩阵。这是所有矩阵都具有的性质。因此可以将A分解A=λ1UV+λ2UV+…+λmUV=A1+A






