【论文精读】把一切转成mesh!MeshAnything和MeshAnythingV2论文解析 MeshAnything是一个自回归的transformer(autoregressive transformer),其将Mesh的每个面片视作token,整个Mesh被视作token序列,接着像大语言模型一样,**一个token一个token地生成**,最终生成出整个Mesh。
【机器学习】VQ-VAE(Vector Quantized Variational Autoencoder) 总结来说,VQ-VAE是一种强大的生成模型,通过结合VAE的结构和向量量化机制,可以有效处理高维数据生成和重构的问题。
【计算机网络】解决gradio无法发布share link(public URL)或者发布的local url(http://127.0.0.1:7860)无法访问的问题 gradio无法发布share link(public URL)或者发布的local url(http://127.0.0.1:7860)无法访问的问题解决
【计算机网络】localhost,127.0.0.1 和 0.0.0.0傻傻分不清?这篇文章带你认识 总结来说,127.0.0.1 用于本地测试,只能由本机访问,localhost 是一个方便的别名,用于简化对本机 127.0.0.1 地址的引用,而 0.0.0.0 用于使服务对所有网络接口可见,可以被其他计算机访问。在部署服务时,选择哪个地址取决于你的具体需求和安全考虑。
【python】【全网首发】详细解释原因并解决pycharm选择ssh interpreter但运行程序报错No such file or directory的问题 习惯了windows可视化界面的码农们将pycharm视为python编程的一大神器IDE。要是能将本地代码和远程服务器代码进行同步,在本地修改代码实时同步到服务器上,再使用服务器的python interpreter和服务器计算资源跑程序,岂不爽哉。这不pycharm也确实有对应功能可以通过设置ssh interpreter + deployment的path mapping来实现上述功能。按着教程配置,有时候挺顺利,有时候却遇到No such file or directory的问题,查看deploym
【linux】服务器CPU占用50%,top/htop/ps却看不到异常进程?本文带你彻底杀毒! htop发现前32个核全被占满了,但是却找不到对应进程号发现CPU占用3143.28%,因为是32核,平均每核就是接近100%
【3维视觉】20230922_网格编码最新进展 VDMC的编码和解码过程的高层框图如图2所示[4][5]。预处理模块提供了更好的率失真( Rate-Distortion,RD )性能,支持可伸缩解码和渐进传输等优点,可以选择应用。预处理模块将动态网格输入的第i帧(记为M(i))转换为一组基网格(即降分网格)m(i)与位移d(i)。关联属性图A(i)也做了相应的调整。编码器对这种新的表示进行压缩并生成压缩后的比特流b(i),它包含各部分子比特流。注意,编码过程中的反馈回路允许编码器引导预处理块并根据各种准则改变其参数以达到最佳可能的折中
【图像编码】基于信息熵理论的端到端图像编码中熵编码的概率估计 独立熵:HX−∑x∈XlogPx,表示X的不确定性条件熵:HY∣X−∑x∈X∑y∈YPxylogPy∣x,表示在已知 X 的情况下,Y 的不确定性。联合熵:HXYHXHY∣XHYHX∣Y互信息:IX;YHXHY−HXYHX−HX∣YHY−HY∣X如果X与Y独立,则互信息为0简单理解条件熵:条件越多,事件的不确定性就越小,熵就越小。
【数字信号处理】为什么高斯滤波会造成数据收缩 这段话指出高斯滤波作为最常用的线性平滑技术,具有一个已知的困难,即会导致应用该滤波器的数据收缩。例如,对图像多次使用高斯滤波器进行平滑,最终会使图像收敛为均匀的灰度。同样地,对一个圆进行高斯平滑(即对每个坐标函数x和y分别进行平滑)会产生一个较小的圆。高斯滤波的权重分布使得离中心较远的像素对平滑结果的贡献较小。因此,较低的像素值会对平滑结果产生更大的影响,导致图像整体收缩。这是由于高斯滤波器的平滑过程会使周围像素的值趋向于平均值,而较低的像素值在平均过程中会拉低整体数值。
【论文投稿】图形学论文投稿去向 SIGGRAPH:SIGGRAPH会议是计算机图形学领域最重要的会议之一,接收与图形学和交互技术相关的高质量论文。该会议涵盖了各个方面的图形学研究,包括网格处理、几何建模、渲染和可视化等。Eurographics:【SCI 4区】Eurographics是欧洲计算机图形学领域的主要会议,也接收与网格几何处理相关的论文。该会议汇集了欧洲和国际上的研究人员,展示最新的图形学研究成果。
【论文投稿】ACM Transactions on Graphics( TOG)和SIGGRAPH投稿指南 SIGGRAPH(Special Interest Group on Computer Graphics and Interactive Techniques)是一个专注于计算机图形学和交互技术的国际性学术组织。下面是关于SIGGRAPH的详细介绍:组织目的:SIGGRAPH的主要目标是促进计算机图形学和交互技术领域的学术研究和应用发展。它通过组织会议、出版期刊、举办教育活动和建立专业网络等方式,为学术界、工业界和创意界的专业人士提供一个交流和合作的平台。SIGGRAPH会议:SIGGRAPH每年举办一
【3维视觉】网格的拉普拉斯坐标及其应用 在计算网格的拉普拉斯坐标时,可以使用以下公式:对于一个具有N个顶点的网格,假设每个顶点的坐标为xiyizi,其中i12N。拉普拉斯坐标Li表示第i个顶点的坐标与其相邻顶点坐标的差的加权平均。
【3维视觉】网格的谱分解和应用(GFT图傅里叶变换) 这篇文章主要介绍了一种称为"网格几何谱压缩"的技术,用于对网格几何数据进行压缩。该方法利用了网格的谱性质,并通过保留关键频率分量来实现高效的压缩。作者通过实验证明了该方法在减小网格数据尺寸的同时,能够保持较高的几何质量和视觉效果。
【计算机视觉】递归神经网络在图像超分的应用Deep Recursive Residual Network for Image Super Resolution 这篇文章是第一次将之前已有的递归神经网络(Recursive Neural Network)结构应用在图像超分辨率上。为了增加网络的感受野,提高网络性能,引入了深度递归神经网络,递归模块权重共享减少了模型所需参数量,但出现了梯度爆炸/消失问题,又研究出了递归监督和跳跃连接两个扩展办法。递归监督:把每次递归后的特征映射都用于重建目标高分辨率图像HR。由于每次递归都会导致不同的HR预测,因此作者将不同级别的递归产生的所有预测结合起来,以提供更准确的最终预测。每次递归的预测都受到GT监督。