定义代表三维笛卡尔坐标系上某个点的Point 类(包括x 、y 、z 三个属性),为该类定义一个方法,可接收second 、third 、forth 三个参数,用于计算当前点、second 、third 组成的面与second 、third 、forth组成的面之间的夹角。
A,B,C,D分别对应于提示point1,point2,point3,point4,线段BC是面ABC与面DBC的公共边,计算俩面空间夹角: cos (夹角) = (X·Y)/|X||Y|,其中X=AB×BC,Y=BC×CD,X·Y代表X与Y的点积,AB×BC代表AB与BC的叉乘
import math
class Point():
def __init__(self,x,y,z):
self.x = x
self.y = y
self.z = z
def distance(self):
xx = (self.x) ** 2
yy = (self.y) ** 2
zz = (self.z) ** 2
return (xx + yy + zz) ** (0.5)
def vector(self,other):
xx = (self.x - other.x)
yy = (self.y - other.y)
zz = (self.z - other.z)
return Point(xx,yy,zz)
def cross(self,other):
return Point(self.x*other.z-self.z*other.y , self.z*other.x-self.x*other.z , self.x*other.y-self.y*other.x)
def dot(self,other):
return (self.x*other.x + self.y*other.y + self.z*other.z)
# def dot(self, other):
# return Point((self.x * other.x),
# (self.y * other.y),
# (self.z * other.z))
def angle(self,second,third,forth):
vertor11 = point1.vector(point2)
vertor12 = point1.vector(point3)
vertor21 = point4.vector(point2)
vertor22 = point4.vector(point3)
vertor1 = vertor11.cross(vertor12)
vertor2 = vertor21.cross(vertor22)
return math.acos( (vertor1.dot(vertor2)) / ((vertor1.distance())*(vertor2.distance())) )
point1 = Point(0,1,0)
point2 = Point(1,0,0)
point3 = Point(0,0,0)
point4 = Point(0,0,1)
angels = point1.angle(point2,point3,point4)
print(math.degrees(angels))