Python计算空间二面角

定义代表三维笛卡尔坐标系上某个点的Point 类(包括x 、y 、z 三个属性),为该类定义一个方法,可接收second 、third 、forth 三个参数,用于计算当前点、second 、third 组成的面与second 、third 、forth组成的面之间的夹角。
A,B,C,D分别对应于提示point1,point2,point3,point4,线段BC是面ABC与面DBC的公共边,计算俩面空间夹角: cos (夹角) = (X·Y)/|X||Y|,其中X=AB×BC,Y=BC×CD,X·Y代表X与Y的点积,AB×BC代表AB与BC的叉乘

import math

class Point():
    def __init__(self,x,y,z):
        self.x = x
        self.y = y
        self.z = z

    def distance(self):
        xx = (self.x) ** 2
        yy = (self.y) ** 2
        zz = (self.z) ** 2
        return (xx + yy + zz) ** (0.5)

    def vector(self,other):
        xx = (self.x - other.x)
        yy = (self.y - other.y)
        zz = (self.z - other.z)
        return Point(xx,yy,zz)

    def cross(self,other):
        return Point(self.x*other.z-self.z*other.y , self.z*other.x-self.x*other.z , self.x*other.y-self.y*other.x)

    def dot(self,other):
        return (self.x*other.x + self.y*other.y + self.z*other.z)
    # def dot(self, other):
    #     return Point((self.x * other.x),
    #                  (self.y * other.y),
    #                  (self.z * other.z))

    def angle(self,second,third,forth):

        vertor11 = point1.vector(point2)
        vertor12 = point1.vector(point3)
        vertor21 = point4.vector(point2)
        vertor22 = point4.vector(point3)
        vertor1 = vertor11.cross(vertor12)
        vertor2 = vertor21.cross(vertor22)
        return math.acos(  (vertor1.dot(vertor2)) / ((vertor1.distance())*(vertor2.distance())) )

point1 = Point(0,1,0)
point2 = Point(1,0,0)
point3 = Point(0,0,0)
point4 = Point(0,0,1)


angels = point1.angle(point2,point3,point4)
print(math.degrees(angels))
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值