NLU --自然语言理解论文 -终版


Abstract—Natural language is one of the ways information is encoded and it has highly abstracted and conceptualized the information. This paper disassembles the information represented by natural language, analyzes the classification coding system of attribute information and the abstraction relation between attribute information and entities in the real-world, constructs the storage model of information, and simulate the attribute information processing process in one of the attribute spaces, interprets how the relations which represented by “Be”, “Have”, “Of”, and so on are embodied in the information storage data structures and the corresponding data reading modes, reclassifies the sentences types from the perspective of task types and data reading modes. Then, simulated the understanding process (the information processing process) on a dialogue example. Finally, the author summarizes the basic conditions of understanding and gives out the definition of understanding from a personal point of view.

The study in this paper provides a practical, theoretical basis and research methods for NLU. It also can be applied in large-scale multi-type information processing in the artificial intelligence (AI) area.

Keywords and Phrases: information encoding, lexical decoding,
attribute information, attribute space, new classification of lexical
chunks, classification coding system, memory-graph, set structure, information
architecture, interpretations of connections, data reading mode, task type of sentences,
graph-tree structure, spatial projection map, basic conditions of
understanding, definition of understanding.


©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页