图森TuSimple车道线检测数据集介绍

图森TuSimple提供了约7,000个1秒钟的20帧视频片段,用于自动驾驶中的车道检测,强调算法的时间/内存效率。数据集包含训练和测试集,分别有3626和2782个视频片段,标注集中在当前和相邻车道。数据集特点包括不同天气、车道数量和交通情况。参赛者需考虑车道语义,提供最多4/5车道的标记,并通过JSON文件提交预测结果,最终根据准确性、FP和FN评估算法性能。" 108958462,10012092,Python字典合并方法大全,"['python', 'django', '机器学习']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文:

https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection

数据集下载地址:

道路上的对象可以分为两大类:静态对象和动态对象。 车道标记是高速公路上的主要静态组成部分。 他们指示车辆以交互方式安全地在高速公路上行驶。 为了鼓励人们解决高速公路上的车道检测问题,我们发布了大约7,000个1秒钟长的20帧长的视频剪辑。

车道检测是自动驾驶中的一项关键任务,它为汽车的控制提供定位信息。 我们为此任务提供了视频剪辑,每个剪辑的最后一帧都包含带标签的车道。 该视频剪辑可以帮助算法推断出更好的车道检测结果。 通过剪辑,我们希望竞争对手能提出更有效的算法。 对于自动驾驶车辆,时间/内存效率算法意味着更多资源可用于其他算法和工程流水线。

同时,我们希望参与者考虑自动驾驶车道的语义,而不是检测道路上的每个车道标记。 因此,注释和测试集中在当前车道和左/右车道上。

我们将有一个排行榜,显示提交的评估结果。 我们为前三名参赛者提供奖品,CVPR 2017自动驾驶挑战赛讲习班也将提及这些奖品。

在这里插入图片描述

数据集特征

复杂性:

  1. 良好和中等天气条件
  2. 白天不同
  3. 2车道/ 3车道/ 4车道/或更多高速公路
  4. 不同的交通状况

规模:

  1. 训练:3626个视频剪辑,3626个带标注的帧(每个剪辑clips有20帧,最后一帧带有标注)
  2. 测试:2782个视频剪辑

相机和视频片段:

  1. 1s剪辑20帧
  2. 相机的视线方向非常接近行车方向

注释类型:

  1. 车道标记折线

数据集细节

目录结构

训练/测试数据集的目录结构如下。 我们有一个JSON文件来指导您如何使用clips目录中的数据。

dataset
|
|----clips/ # 视频剪辑
|------|
|------|----some_clip/ # 剪辑中的序列图像, 共20帧
|------|----…
|
|----tasks.json # 训练集中的标记数据,以及测试集中的提交模板。

示例

演示代码显示了车道数据集的数据格式和评估工具的用法。

import json
import numpy as np
import cv2
import matplotlib.pyplot as plt
from evaluate.lane import LaneEval
%matplotlib inline

假设我们有两个json文件,一个是ground truth,另一个是预测。

我们假设预测json文件中的每一行都对应于地面真实json,这意味着这两行都与同一张图片相关。

json_pred = [json.loads(line) for line in open('pred.json').readlines()]  # 二者好像没什么区别
json_gt = [json.loads(line) for line in open('label_data.json')]

pred, gt = json_pred[0], json_gt[0]
pred_lanes = pred['lanes']
run_time = pred['run_time']
gt_lanes = gt['lanes']
y_samples = gt['h_samples']
raw_file = gt['raw_file']

首先看一下图像。

img = plt.imread(raw_file)
plt.imshow(img)
plt.show()

在这里插入图片描述
其次看一下怎么用y_samples

img_vis = img.copy()

for lane in gt_lanes_vis:
    for pt in lane:
        cv2.circle(img_vis, pt, radius=5, color=(0, 255, 0))

plt.imshow(img_vis)
plt.show()

在这里插入图片描述再次我们看一下真值和预测值的样例。

gt_lanes_vis = [[(x, y) for (x, y) in zip(lane, y_samples) if x >= 0] for lane in gt_lanes]
pred_lanes_vis = [[(x, y) for (x, y) in zip(lane, y_samples) if x >= 0] for lane in pred_lanes]
img_vis = img.copy()

for lane in gt_lanes_vis:
    cv2.polylines(img_vis, np.int32([lane]), isClosed=False, color=(0,255,0), thickness=5)
for lane in pred_lanes_vis:
    cv2.polylines(img_vis, np.int32([lane]), isClosed=False, color=(0,0,255), thickness=2)

plt.imshow(img_vis)
plt.show()

在这里插入图片描述现在,我们可以使用该工具根据数据评估预测。
benchmark网页上描述了评估指标。

np.random.shuffle(pred_lanes)
# 整个数据集上的准确率Acc、FP、FN
print LaneEval.bench(pred_lanes, gt_lanes, y_samples, run_time)

在这里插入图片描述

benchmark网页如下。

import numpy 
### 使用语义分割进行车道线检测的方法 #### 方法概述 将车道线检测视为一个实例分割问题,不仅依赖于传统的语义分割头,还引入了一个embedding头用于区分不同的车道实例[^1]。这种方法能够更精确地区分同一类别中的不同对象。 #### 数据准备 对于数据集的构建,可以采用图森格式的数据集并利用`labelme`工具完成标注工作[^3]。确保数据集中包含了足够的多样性样本以覆盖各种天气条件和光照环境下的场景图像。这有助于提高模型泛化能力。 #### 模型选择与训练 使用PaddlePaddle框架及其内置的PaddleSeg模块作为开发平台来进行车道线的语义分割任务[^2]。该框架提供了丰富的预训练模型供开发者快速上手,并支持自定义网络结构的设计。为了增强特征表达能力和处理复杂背景干扰的能力,可以在基础架构之上加入额外组件如UNet++或DeepLabV3+等改进版编码解码器设计思路[^4]。 ```python import paddle from paddleseg.cvlibs import Config, SegBuilder from paddleseg.core.infer import predict config_path = 'path_to_your_config_file' cfg = Config(config_path) builder = SegBuilder(cfg) model = builder.model train_dataset = builder.train_dataset val_dataset = builder.val_dataset optimizer = paddle.optimizer.Adam(parameters=model.parameters()) trainer = Trainer(model, optimizer=optimizer, train_dataset=train_dataset, val_dataset=val_dataset) trainer.run() ``` #### 结果评估与优化 通过计算IoU(Intersection over Union)、Dice系数等方式量化评价模型性能;同时借助混淆矩阵分析误分类情况以便针对性调整参数设置或者增加特定类型的训练样本来改善识别效果。此外还可以尝试集成学习方法比如Boosting系列算法进一步提升整体表现水平。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值