Python环境-TensorFlow和keras环境安装

本文介绍了如何使用conda创建虚拟环境,然后在环境中安装TensorFlow和Keras。通过指定pip的安装目标路径解决可能出现的错误。接着,将新环境配置到ipykernel中,以便在Jupyternotebook中使用。最后,通过导入和测试Keras库来验证安装是否成功。

提示:Python环境-TensorFlow和keras环境安装


前言

提示:这里可以添加本文要记录的大概内容:

例如:Python环境-TensorFlow和keras环境安装。


提示:以下是本篇文章正文内容,下面案例可供参考

TensorFlow和keras安装教程

示例:
创建虚拟环境

conda create -n tf python=3.9

pip安装tensorflow,注意版本与镜像源

pip install tensorflow -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com

安装keras

conda install mingw libpython
pip install theano

之后安装

pip install keras

出现错误,需要选择目标路径pip

pip install --target=e:\python\anaconda3\envs\tf\lib\site-packages keras

把当前环境配置到 ipykernel 里去

查看内核

jupyter kernelspec list

安装ipykernel

conda install ipykernel
python -m ipykernel install --user --name 环境名 --di
python -m ipykernel install --user --name tf --display-name TensorFlow(2.11)

测试

Jupyter测试是否安装成功:

import keras
from keras.datasets import mnist
(train_images,train_labels),(test_images,test_labels) = mnist.load_data() #加载数据
print('shape of train images is ',train_images.shape)
print('shape of train labels is ',train_labels.shape)
print('train labels is ',train_labels)
print('shape of test images is ',test_images.shape)
print('shape of test labels is',test_labels.shape)
print('test labels is',test_labels)

在这里插入图片描述


总结

提示:这里对文章进行总结:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值