提示:Python环境-TensorFlow和keras环境安装
前言
提示:这里可以添加本文要记录的大概内容:
例如:Python环境-TensorFlow和keras环境安装。
提示:以下是本篇文章正文内容,下面案例可供参考
TensorFlow和keras安装教程
示例:
创建虚拟环境
conda create -n tf python=3.9
pip安装tensorflow,注意版本与镜像源
pip install tensorflow -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
安装keras
conda install mingw libpython
pip install theano
之后安装
pip install keras
出现错误,需要选择目标路径pip
pip install --target=e:\python\anaconda3\envs\tf\lib\site-packages keras
把当前环境配置到 ipykernel 里去
查看内核
jupyter kernelspec list
安装ipykernel
conda install ipykernel
python -m ipykernel install --user --name 环境名 --di
python -m ipykernel install --user --name tf --display-name TensorFlow(2.11)
测试
Jupyter测试是否安装成功:
import keras
from keras.datasets import mnist
(train_images,train_labels),(test_images,test_labels) = mnist.load_data() #加载数据
print('shape of train images is ',train_images.shape)
print('shape of train labels is ',train_labels.shape)
print('train labels is ',train_labels)
print('shape of test images is ',test_images.shape)
print('shape of test labels is',test_labels.shape)
print('test labels is',test_labels)

总结
提示:这里对文章进行总结:
本文介绍了如何使用conda创建虚拟环境,然后在环境中安装TensorFlow和Keras。通过指定pip的安装目标路径解决可能出现的错误。接着,将新环境配置到ipykernel中,以便在Jupyternotebook中使用。最后,通过导入和测试Keras库来验证安装是否成功。
9112

被折叠的 条评论
为什么被折叠?



