
MPC控制与强化学习控制的区别
对于实际问题一般不直接上真机进行试验,因此要尽可能真实的模拟系统模型(构建系统动力学模型,可能会存在高阶非线性问题,甚至没有明确的物理模型,只有一些运行历史数据)ps1:近几年有提到强化学习中的模型预测控制概念,理解为model-based 的RL,在一些问题的性能上相对于model-free有所提升。,(可以是模型预测控制、经典PID控制、鲁棒控制、最优控制、伺服控制等,也可以是启发式算法机器学习算法等)(1)主要基于数据驱动,无需动力学建模,可选择性的注入专家经验,建模耗时短、成本低。




