DuoRC: Towards Complex Language Understanding with Paraphrased Reading Comprehension

DuoRC分析 数量:186089对Q-A对 Source:来自7680个电影情节,每对来自两个版本,一个版本来自WiKi,另外一个来自IMD。 特征:问题和答案是从描述相同故事的文档的不同版本创建的,通过设计确保,从一个版本创建的问题与包含另一个版本答案的段之间在词汇上几乎没有重叠。 另...

2019-06-23 16:10:33

阅读数 1

评论数 0

Ubuntu系统查看python多少位

打开终端 输入python命令: 接下来在输入: 可以看到输入的是('64bit','ELF') import platform platform.architecture()

2019-04-04 18:04:56

阅读数 56

评论数 0

tf.contrib.rnn.LSTMCell()详细介绍,每个参数的含义介绍

LSTM由三个门组成,分别是:遗忘门,输入门、输出门 函数初始化: __init__( num_units, use_peepholes=False, cell_clip=None, initializer=None, num_proj=None, proj_clip...

2019-03-31 09:16:18

阅读数 1121

评论数 0

tf.placeholder快速理解

1。tf.placeholder(dtype, shape=None,name=None) # dtype:数据类型,常用的是tf.float32数值类型 # shape:数据形状,默认是None,就是一维值,也可以是多维(比如[1,6], [4, None]表示行是4,列不定) ...

2019-03-24 13:37:36

阅读数 30

评论数 0

Cross Entropy Loss(交叉熵)快速理解

监督学习分为两大类:分类问题和回归问题。简单来说,分类问题目标输出的是离散值,回归问题目标输出的是连续值。但是无论是哪种问题,神经网络模型的效果及优化的目标都是通过损失函数来定义的。 对于回归问题常用的损失函数有:均方误差(MSE),平均绝对值误差(也称L1损失)等。 对于分类问题,常用的损失...

2019-03-15 09:13:27

阅读数 27

评论数 0

Windows/Linux 基于CPU的Anaconda3+Python3.6+TensorFlow版本匹配以及下载链接

参考博客:https://blog.csdn.net/panyu_123/article/details/83183294 Windows 系统 CPU Anaconda3-5.2.0-Windows-x86_64.exe 下载链接:https://repo.anaconda.com/arch...

2019-03-15 09:12:23

阅读数 23

评论数 0

Ubuntu 16.04版本安装sklearn时,出现Consider using the `--user` option or check the permissions.

Ubuntu 16.04版本安装sklearn时,出现Consider using the `--user` option or check the permissions. 解决办法是 在终端中用命令  pip install --user sklearn 安装scipy,numpy时可能遇...

2018-12-11 10:40:52

阅读数 524

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭