浅谈图像防抖技术处理

电子科技大学
格拉斯哥学院2017级
刘子敬

对于当今社会大多数没有接受过摄影训练的常人来说,除开拍摄照片的要求,拍摄视频的要求相对较为苛刻。在拍摄过程中注意的焦距,亮度的调整位置都是诸多需要考虑的问题。其中最为重要的是拍摄过程中的抖动问题,不知道拍摄技巧的普通大众很难克服这种困难,导致拍摄出的视频抖动频率过快或者振动幅度过大。

光学防抖是现阶段的主流视频处理手段,主要大致为镜头防抖。镜头防抖技术是利用镜头里的陀螺仪对于微小的移动进行测量,并传递将信号至镜头内的微处理器期内计算补偿位移量,然后根据镜头抖动加以补偿,已调整镜头角度或距离的方式使光路稳定,以有效克服振动所带来的画面模糊。其次是CCD防抖(传感器防抖)技术,其原理是利用感光器安装在支架上,通过其与镜头防抖中陀螺仪相同的检测功能,对信号进行处理,计算出可以抵消抖动的CCD移动量,并对缺失的量进行补偿来达到防抖。

电子防抖技术是在CCD防抖的基础上建立起来的技术。相对于正常拍摄,通常拍摄画面只有正常的90%,而剩余的百分之10% 的画面通过像素插值来补偿振动,相当于对于画面的后期数据处理。可这对于画质量没有帮助,反而可能有破坏的负面效果。电子防抖的实现原理和数码变焦相类似,通过像素插值来补偿震动,也就是说像素的大小就决定了电子防抖的效果,试想一下,如果只有80W像素的CCD,再分出一部分的像素来进行防抖,会造成画质下降,嘈点增加,颗粒感大了,色彩还原还差了不少。以GS70为例子,在光线比较差的时候拍摄,就算是3CCD的机器,开了防抖的效果都比不开防抖的效果差一截。然而相对于光学防抖,电子防抖的成本较低,省去了光学防抖中对镜头的高级处理所带来的高额的开销,在不更换镜头的前提下对于图像呈现的观赏效果有一定的帮助作用。

简单的来说,光学防抖与电子防抖有着一定意义上的区别,前者是对于镜头本身的处理,后者则更多的是对数据的处理。尽管二者各有各自的优劣点,但不可否认的是两种防抖技术的出现都对成像技术有了不可或缺的帮助。

总的来说,防抖技术的出现在一定程度上是对于摄像机技术的一种发明的提升,在生活中,拍摄者可以用这种技术来弥补自生拍摄能力的不足。在现今社会,相机的从200万-1600万像素的提升已经很难再有较大的提升空间,相反用户对于防抖技术的需求日益加深,这也是为什么提高摄像防抖技术十分重要。换句话说,提高摄像机的防抖技术一定意义上也是提高摄像机的品质。虽然目前看来,防抖技术层面仅仅停留在微调辅助的作用,并不能处理过大的振动图像,更多的是需要对于摄影者自身的技术磨练。但这门技术的上升领域还很高,对于今后在交通,军事的应用用更为广泛。配合稳定器的使用,相信在未来图像防抖处理技术会在向上的道路上越走越远。

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值