文章目录
空间域和频率域的概念
空间域 (P31)
由一幅图像的坐标张成的实平面部分称为空间域,x 和 y 称为空间变量或空间坐标。
通常,图像在任何坐标 (x, y) 处的值记为 f(x, y),其中 x 和 y 都是整数。
频率域 (P128)
因为傅里叶变换的唯一变量是频率,所以说傅里叶变换域是频率域。
傅里叶变换的简单描述
傅里叶级数:任何周期函数都可以表示为不同频率的正弦和/或余弦之和的形式,每个正弦项和/或余弦项都乘以不同的系数。
傅里叶变换:非周期函数(但该曲线下的面积是有限的)也可用正弦和/或余弦乘以加权函数的积分来表示。
连续变量函数的傅里叶变换 (P128):
由 η{f(t)} 表示的连续变量 t 的连续函数 f(t) 的傅里叶变换定义为:
η { f ( t ) } = ∫ − ∞ ∞ f ( t ) e − j 2 π u t d t η\{f(t)\}=∫^∞_{-∞}f(t)e^{-j2πut}dt η{ f(t)}=∫−∞∞f(t)e−j2πutdt
u 也是一个连续变量,所以上式仅是 u 的函数。为了方便,上式可以写为:
F ( u ) = ∫ − ∞ ∞ f ( t ) e − j 2 π u t d t F(u)=∫^∞_{-∞}f(t)e^{-j2πut}dt F(u)=∫−∞∞f(t)e−j2πutdt
使用欧拉公式:
e j θ = c o s θ + j s i n θ e^{jθ}=cosθ+jsinθ ejθ=cosθ+jsinθ
F(u) 可以表示为:
F ( u ) = ∫ − ∞ ∞ f ( t ) [ c o s ( 2 π u t ) − j s i n ( 2 π u t ) ] d t F(u)=∫^∞_{-∞}f(t)[cos(2πut)-jsin(2πut)]dt F(u)=∫−∞∞f(t)[cos(2πut)−jsin(2πut)]dt
取样 (P131)
用计算机处理之前,连续函数必须转换为离散值序列。模拟取样的一种方法是,用一个 ΔT 单位间隔的冲激串作为取样函数去乘以 f(t),即:
f ~ ( t ) = f ( t ) s Δ T ( t ) = ∑ n = − ∞ ∞ f ( t ) ∂ ( t − n Δ T ) \widetilde{f}(t)=f(t)s_{ΔT}(t)=∑_{n=-∞}^∞f(t)∂(t-nΔT) f (t)=f(t)sΔT<

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



