铭瑾熙
码龄6年
关注
提问 私信
  • 博客:72,498
    72,498
    总访问量
  • 75
    原创
  • 37,723
    排名
  • 841
    粉丝
  • 0
    铁粉

个人简介:每天研究一点点,成功指日可待,有任何关于GTP的内容,可以联系l715666082

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:新疆
  • 加入CSDN时间: 2018-11-23
博客简介:

weixin_43775295的博客

查看详细资料
  • 原力等级
    当前等级
    4
    当前总分
    603
    当月
    11
个人成就
  • 获得1,367次点赞
  • 内容获得3次评论
  • 获得1,006次收藏
创作历程
  • 2篇
    2025年
  • 73篇
    2024年
成就勋章
TA的专栏
  • 深度学习
    55篇
  • 人工智能
    62篇
  • 机器学习
    61篇
  • 操作系统
    2篇
  • 运维开发
    1篇
  • npm
    1篇
兴趣领域 设置
  • 编程语言
    pythonjavaphpc++c语言javascriptswiftobjective-c汇编
  • 大数据
    mysql
  • 前端
    前端前端框架
  • 后端
    爬虫
  • 移动开发
    swift微信小程序
  • 人工智能
    opencv深度学习神经网络自然语言处理tensorflow目标跟踪自动驾驶生成对抗网络pytorchtransformer视觉检测图像处理scikit-learn集成学习迁移学习分类gpt-3AI作画stable diffusionchatgptDALL·E 2
  • 操作系统
    linuxubuntuwindowsmacos
  • 运维
    负载均衡服务器运维开发
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

强化学习应用实例

例如一家日本公司 Fanuc,工厂机器人在拿起一个物体时,会捕捉这个过程的视频,记住它每次操作的行动,操作成功还是失败了,积累经验,下一次可以更快更准地采取行动。在库存管理中,因为库存量大,库存需求波动较大,库存补货速度缓慢等阻碍使得管理是个比较难的问题,可以通过建立强化学习算法来减少库存周转时间,提高空间利用率。例如算法 LinUCB (属于强化学习算法 bandit 的一种算法),会尝试投放更广范围的广告,尽管过去还没有被浏览很多,能够更好地估计真实的点击率。
原创
发布博客 2025.01.09 ·
349 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

深度学习与强化学习

强化学习是机器学习的一个重要分支,是多学科多领域交叉的一个产物,它的本质是解决 decision making 问题,即自动进行决策,并且可以做连续决策。它主要包含四个元素,agent,环境状态,行动,奖励, 强化学习的目标就是获得最多的累计奖励。我们列举几个形象的例子:小孩想要走路,但在这之前,他需要先站起来,站起来之后还要保持平衡,接下来还要先迈出一条腿,是左腿还是右腿,迈出一步后还要迈出下一步。
原创
发布博客 2025.01.09 ·
342 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

机器学习之强化学习

强化学习是机器学习的一个重要分支,是多学科多领域交叉的一个产物,它的本质是解决 decision making 问题,即自动进行决策,并且可以做连续决策。它主要包含四个元素,agent,环境状态,行动,奖励, 强化学习的目标就是获得最多的累计奖励。我们列举几个形象的例子:小孩想要走路,但在这之前,他需要先站起来,站起来之后还要保持平衡,接下来还要先迈出一条腿,是左腿还是右腿,迈出一步后还要迈出下一步。
原创
发布博客 2024.12.14 ·
363 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

深度学习之全景分割

(两者不是完全的隔绝,实例分割也有用IoU监督的,而confidence score是否能够反映mask的真实质量也有存疑过,这个标准也不是固定的)但是实例分割基于region的,允许重叠的segmentation,而全景分割和语义分割一样是像素级的label,不允许重叠标签的出现。PQ的计算类似mAP,也是类内求取,然后求类间的平均值,以便不敏感类别不平衡。式中出去FP与FN后,剩下的式子描述的是match的segmentation的平均IoU,加上FP与FN是为了惩罚match失败的分割实例。
原创
发布博客 2024.12.14 ·
876 阅读 ·
8 点赞 ·
1 评论 ·
17 收藏

深度学习 人脸动漫风格最强模型AnimeGAN PyTorch版本

发布资源 2024.11.30 ·
zip

深度学习 c++ yolo

发布资源 2024.11.30 ·
zip

计算机毕业设计:c++ 深度学习 yolo

发布资源 2024.11.30 ·
zip

深度学习之 DenseNet和2图像分割常用数据集

卷积神经网络结构的设计主要朝着两个方向发展,一个是更宽的网络(代表:GoogleNet、VGG),一个是更深的网络(代表:ResNet)。但是随着层数的加深会出现一个问题——梯度消失,这将会导致网络停止训练。到目前为止解决这个问题的思路基本都是在前后层之间加一个identity connections(short path)。由上图中可知Resnet是做值的相加(也就是add操作),通道数是不变的。
原创
发布博客 2024.11.30 ·
1012 阅读 ·
18 点赞 ·
0 评论 ·
5 收藏

深度学习之CNN在基于弱监督学习的图像分割中的应用

最近基于深度学习的图像分割技术一般依赖于卷积神经网络CNN的训练,训练过程中需要非常大量的标记图像,即一般要求训练图像中都要有精确的分割结果。对于图像分割而言,要得到大量的完整标记过的图像非常困难,比如在ImageNet数据集上,有1400万张图有类别标记,有50万张图给出了bounding box,但是只有4460张图像有像素级别的分割结果。对训练图像中的每个像素做标记非常耗时,特别是对医学图像而言,完成对一个三维的CT或者MRI图像中各组织的标记过程需要数小时。
原创
发布博客 2024.11.30 ·
695 阅读 ·
14 点赞 ·
0 评论 ·
29 收藏

深度学习之Mask-R-CNN

图中灰色部分是原来的RCNN结合ResNet or FPN的网络,下面黑色部分为新添加的并联Mask层,这个图本身与上面的图也没有什么区别,旨在说明作者所提出的Mask RCNN方法的泛化适应能力:可以和多种RCNN框架结合,表现都不错。后面我们把结果对比贴出来(Table2 c & d),能够看到 ROIAlign 带来较大的改进,可以看到,Stride 越大改进越明显。Why K个mask?另外,作者给出了很多实验分割效果,就不都列了,只贴一张和FCIS的对比图(FCIS出现了Overlap的问题)
原创
发布博客 2024.11.29 ·
1017 阅读 ·
16 点赞 ·
0 评论 ·
18 收藏

深度学习之DeepLab系列

最终输出的特征与主干网的最后一层特征图融合,特征图增加 5×128=640 个通道。论文受到 Spatial Pyramid Pooling (SPP) 的启发,提出了一个类似的结构,在给定的输入上以不同采样率的空洞卷积并行采样,相当于以多个比例捕捉图像的上下文,称为 ASPP (atrous spatial pyramid pooling) 模块。在实验中发现 DCNNs 做语义分割时精准度不够的问题,根本原因是 DCNNs 的高级特征的平移不变性,即高层次特征映射,根源于重复的池化和下采样。
原创
发布博客 2024.11.29 ·
1586 阅读 ·
15 点赞 ·
0 评论 ·
11 收藏

深度学习之PSPNet

场景解析对于无限制的开放词汇和不同场景来说是具有挑战性的.本文使用文中的pyramid pooling module实现基于不同区域的上下文集成,提出了PSPNet,实现利用上下文信息的能力进行场景解析。对于尤其复杂的场景理解,之前都是采用空间金字塔池化来做的,和之前方法不同(为什么不同,需要参考一下经典的金字塔算法),本文提出了pyramid scene parsing network(PSPNet)。(3) 构建了一个用于state-of-the-art的场景解析和语义分割的实践系统(具体是什么?
原创
发布博客 2024.11.27 ·
1032 阅读 ·
37 点赞 ·
0 评论 ·
4 收藏

深度学习之 RefineNet

接下来仔细看一下RefineNet block,可以看到主要组成部分是Residual convolution unit, Multi-resolution fusion, Chained residual pooling, Output convolutions. 切记这个block作用是融合多个level的feature map输出单个level的feature map,但具体的实现应该是和输入个数、shape无关的。注意如果是像RefineNet-4那样的单输入block这一部分就直接pass了;
原创
发布博客 2024.11.27 ·
495 阅读 ·
5 点赞 ·
0 评论 ·
9 收藏

计算机毕业设计:java+进销存+企业进销存管理系统

发布资源 2024.11.26 ·
zip

计算机毕业设计:JAVA+爬虫

发布资源 2024.11.26 ·
zip

深度学习之 SegNet

解码网络使用保存的最大池化索引上采样,得到稀疏的特征图,将特征图与可训练的解码滤波器族卷积得到致密的特征图。图3中右边是FCN的解码技术,FCN对编码的特征图进行降维,降维后输入到解码网络,解码网络中,上采样使用反卷积实现,上采样的特征图与降维的编码图进行element-wise add得到最终的解码特征图。可训练的图像分割引擎,包含一个encoder网络,一个对应的decoder网络,衔接像素级分类层,解码网络与VGG16的13层卷积层相同。上采样得到的稀疏图与可训练的滤波器卷积得到致密的特征图。
原创
发布博客 2024.11.26 ·
705 阅读 ·
8 点赞 ·
0 评论 ·
9 收藏

深度学习之U-Net

因为上采样可以补足一些图片的信息,但是信息补充的肯定不完全,所以还需要与左边的分辨率比较高的图片相连接起来(直接复制过来再裁剪到与上采样图片一样大小),这就相当于在高分辨率和更抽象特征当中做一个折衷,因为随着卷积次数增多,提取的特征也更加有效,更加抽象,上采样的图片是经历多次卷积后的图片,肯定是比较高效和抽象的图片,然后把它与左边不怎么抽象但更高分辨率的特征图片进行连接)。(1) 使用全卷积神经网络。第二,由于输入的训练数据是patches,这样就相当于进行了数据增广,解决了生物医学图像数量少的问题。
原创
发布博客 2024.11.26 ·
1051 阅读 ·
21 点赞 ·
0 评论 ·
6 收藏

深度学习之FCN

但是在进入全连接层时,feature map(假设大小为n×n)要拉成一条向量,而向量中每个元素(共n×n个)作为一个结点都要与下一个层的所有结点(假设4096个)全连接,这里的权值个数是4096×n×n,而我们知道神经网络结构一旦确定,它的权值个数都是固定的,所以这个n不能变化,n是conv5的outputsize,所以层层向回看,每个outputsize都要固定,那每个inputsize都要固定,因此输入图片大小要固定。然而在两类层中,神经元都是计算点积,所以它们的函数形式是一样的。
原创
发布博客 2024.11.21 ·
930 阅读 ·
28 点赞 ·
0 评论 ·
10 收藏

深度学习之图像分割

与语义分割不同,实例分割只对特定物体进行类别分配,这一点与目标检测有点相似,但目标检测输出的是边界框和类别,而实例分割输出的是掩膜(mask)和类别。图像分割是预测图像中每一个像素所属的类别或者物体。为图像中的每个像素分配一个类别,如把画面中的所有物体都指出它们各自的类别。
原创
发布博客 2024.11.21 ·
307 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

计算机毕业设计:VB+学校用电收费管理系统

发布资源 2024.11.20 ·
zip
加载更多