第一行——咕咕咕。
第二行——我太菜了+感谢这题是个模板题。
CRT和EXCRT:常用来解决同余方程问题。
中国剩余定理:一个整数n,给定一系列p和q,n%p = q,保证所有的p都是质数,求n。
扩展中国剩余定理:一个整数n,给定一系列p和q,n%p = q,p不一定是质数,求n。
题目链接:A.Who is better?
题意:给你一组余数和模数,求原来的n,然后轮流取,第一个取1=<x<n,之后的每次取1=<y<=2*x,谁取到最后一个谁赢。
考察内容:扩展中国剩余定理的板子+Fibonacci博弈的板子(Fibonacci博弈看这里)
下附代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <set>
#define ll long long
#define inf 0x3f3f3f3f
using namespace std;
ll f[80];
ll p[15],q[15];
set<ll>s;
void fibo()
{
f[0] = 0;
f[1] = 1;
s.insert(0);
s.insert(1);
for(int i = 2; i < 80; ++i)
f[i] = f[i-1] + f[i-2],s.insert(f[i]);
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(b == 0)
{
x = 1;
y = 0;
return a;
}
ll res = exgcd(b, a%b, y, x);
y -= (a/b)*x;
return res;
}
ll excrt(ll p[],ll q[],int t)
{
ll a = p[0];
ll b = q[0];
ll c,d,x,y;
for(int i = 1; i < t; ++i)
{
d = exgcd(a, p[i], x, y);
if((q[i] - b) % d) return -1;
x *= (q[i] - b) / d;
c = p[i] / d;
x = (x % c + c) % c;
b = a * x + b;
a = a * p[i] / d;
}
return b;
}
int main()
{
fibo();
int t;
scanf("%d",&t);
for(int i = 0; i < t; ++i)
scanf("%lld%lld",&p[i],&q[i]);
ll n = excrt(p,q,t);
if(n == -1) printf("Tankernb!\n");
else if(s.count(n) == 1) printf("Lbnb!\n");
else printf("Zgxnb!\n");
}
欢迎指出错误qwq

398

被折叠的 条评论
为什么被折叠?



