中国剩余定理(CRT)//2019icpc徐州站网络赛A.Who is better?

第一行——咕咕咕。

第二行——我太菜了+感谢这题是个模板题。

 

CRT和EXCRT:常用来解决同余方程问题。

中国剩余定理:一个整数n,给定一系列p和q,n%p = q,保证所有的p都是质数,求n。

扩展中国剩余定理:一个整数n,给定一系列p和q,n%p = q,p不一定是质数,求n。

 

题目链接:A.Who is better?

题意:给你一组余数和模数,求原来的n,然后轮流取,第一个取1=<x<n,之后的每次取1=<y<=2*x,谁取到最后一个谁赢。

考察内容:扩展中国剩余定理的板子+Fibonacci博弈的板子(Fibonacci博弈看这里

下附代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <set>
#define ll long long
#define inf 0x3f3f3f3f

using namespace std;

ll f[80];
ll p[15],q[15];
set<ll>s;

void fibo()
{
    f[0] = 0;
    f[1] = 1;
    s.insert(0);
    s.insert(1);
    for(int i = 2; i < 80; ++i)
        f[i] = f[i-1] + f[i-2],s.insert(f[i]);
}

ll exgcd(ll a,ll b,ll &x,ll &y)
{
    if(b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    ll res = exgcd(b, a%b, y, x);
    y -= (a/b)*x;
    return res;
}

ll excrt(ll p[],ll q[],int t)
{
    ll a = p[0];
    ll b = q[0];
    ll c,d,x,y;
    for(int i = 1; i < t; ++i)
    {
        d = exgcd(a, p[i], x, y);
        if((q[i] - b) % d) return -1;
        x *= (q[i] - b) / d;
        c = p[i] / d;
        x = (x % c + c) % c;
        b = a * x + b;
        a = a * p[i] / d;
    }
    return b;
}

int main()
{
    fibo();
    int t;
    scanf("%d",&t);
    for(int i = 0; i < t; ++i)
        scanf("%lld%lld",&p[i],&q[i]);
    ll n = excrt(p,q,t);
    if(n == -1) printf("Tankernb!\n");
    else if(s.count(n) == 1) printf("Lbnb!\n");
    else printf("Zgxnb!\n");
}

欢迎指出错误qwq

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值