matlab函数、运算符总结

常见常数

pi圆周率
exp(1)自然对数的底数e
i,j虚数单位
Inf或inf无穷大

内部数字函数

指数函数

exp(x)

对数函数

log(x)
log10(x)
log2(x)

开方函数

sqrt(x)

绝对值函数

abs(x)

三角函数

(自变量单位为弧度)
sin(x)
cos(x)
tan(x)
cot(x)
sec(x)
csc(x)

反三角函数

asin(x)
acos(x)
atan(x)
acot(x)
asec(x)
acsc(x)

双曲函数

sinh(x)
cosh(x)
tanh(x)
coth(x)
sech(x)
csch(x)

反双曲函数

asinh(x)
acosh(x)
atanh(x)
acoth(x)
asech(x)
acsch(x)

求角度函数

atan(x,y)

以坐标原点为定点,x轴正半轴为始边,从原点到点(x,y)的射线为终边的角,其单位为弧度,范围是(-pi,pi ]

数论函数

gcd(a,b) : 两个整数的最大公约数

lcm(a,b): 两个整数的最小公倍数

排列组合函数

factorial(n) : 阶乘函数,表示n的阶乘

复数函数

real(z) : 实数函数
image(z) :虚数函数
abs(z) :求复数的模
angle(z) : 求复数的幅角,范围是(-pi,pi ]
conj(z) : 求复数的共轭复数

求整函数和截尾函数

ceil(x) : 表示大于或等于实数x的最小整数
floor(x) : 表示小于或等于实数x的最大整数
round(x) :最接近x的整数

最大、最小函数

max([a,b,c…]) : 求最大数
min([a,b,c,…]) : 求最小数

符号函数

sign(x):
1,当x>0
0,当x=0
-1,当x<0

数学运算符

a+b
a-b
a*b 矩阵乘法
a.*b 数组乘法
a/b 矩阵左除
a\b矩阵右除
a./b 数组右除
a.\b 数组左除
a^b 矩阵乘法
a.^b数组乘法
-a负号
’ 共轭转置
.’ 一般转置

关系运算符

== 等于
< 小于
“>” 大于
<=
“>=”
~=不等于

关于集合的运算

union(a,b) : 集合a,b的并集
intersect(a,b) : 集合a,b的交集
setdiff(a,b) : 集合a,b的差集a-b
setdiff(U,a) : 求集合a关于U的补集

排序

sort(v)
将向量v的元素从小到大排列

sort(v,dim,descend or ascend)
当dim=1时,矩阵按列排序,descend or ascend用来控制升序还是降序
当dim=2时,矩阵按行排序,descend or ascend用来控制升序还是降序

求极限

极限

syms x
limit(f(x),x,a) :求f(x)关于x趋向于a时的极限

单侧极限

syms x
limit(f(x),x,a,‘left’):求f(x)关于x趋向于a时的左极限

syms x
limit(f(x),x,a,‘right’):求f(x)关于x趋向于a时的右极限

求导数

diff(‘f(x)’,‘x’):求f(x)关于x的导数

syms x diff(f(x))
syms x diff(f(x),x)

求高阶导数

diff(‘f(x)’,‘x’,n):求f(x)关于x的n阶导数

syms x
diff(f(x),n)

syms x
diff(f(x),x,n)

求不定积分

int(‘f(x)’,‘x’) : 求f(x)关于x的积分

syms x
intf(x))

syms x
int(f(x),x)

求定积分,广义积分

int(‘f(x)’,a,b)
求f(x)关于x的积分,区间为a和b

syms x
int(f(x),a,b)

syms x
int(f(x),x,a,b)

展开级数

syms x
taylor(f(x),x,n,a)

解微分方程

dsolve(‘微分方程’,‘自变量’)
dsolve(‘微分方程’,‘初始条件或边界条件’,‘自变量’)

dsolve('D2x+2*x+x=sin(t)','x(0)=1','Dx(0)=1','t')

求多变量函数的极限

limit(limit(f(x,y),x,a),y,b)
maple('limit(f(x,y),{x=a,y=b})')

求多元函数的偏导数

diff(diff(f,x,m),y,n)

或:

diff(diff(f,y,n),x,m)

也可以使用maple

maple('diff(f,x1,x2,...,xn)')

求多变量函数的泰勒展开式

maple('mtaylor(f,[x=x0,y=y0,...],n)')

在x=x0,y=y0,…处求函数f的泰勒展开式,其中n为展开的次数

maple('mtaylor(f,[x,y,...],n)')

在x=0,y=0,…处求函数f的泰勒展开式,其中n为展开的次数

求函数的最大值和最小值

无约束条件的极值
x=fminunc('f(x)',x0,options)

求函数f(x)的极小值点,其中x0是极小值的猜测值,x,x0可以是标量,向量或者矩阵,options为参数说明语句

[x,fval]=fminunc('f(x)',x0,options)

返回的x为极小值,fval为函数的极小值

matlab没有提供求最大值的命令,要求函数的极大值点,只需求-f(x)的极小值点

局限性:
智能处理实数函数的优化问题
目标函数必须是连续的
给出的可能是局部解

有约束条件的极值
x=fmincon('f(x)',x0,A,b,Aep,bep,lb,ub,nonlcon,options)

x0是变量的估计储值,x,x0可以是表脸、向量或者矩阵,options为参数说明语句,A,b,Aep,bep,lb,ub,nonlcon为优化的约束条件

A,b(线性不等式约束)A*x<b
Aep,bep(线性灯饰约束)A=[],B=[]
lb,ublb<=x<=ub
nonlcon非线性的不等式和等式约束

局限性:目标函数和约束函数必须是实数函数,不能为复数函数
2.目标函数和约束函数必须是连续的
3.给出的可能是局部解

求平均值

mean(data) : 求数据data的算是平均值,data可以是向量,也可以是矩阵(返回每一列元素的算术平均数)
harmmean(data) : 求数据data的调和平均数,data可以是向量,也可以是矩阵(返回每一列元素的调和平均数)
geomean(data) : 求数据data的几何平均数,data可以是向量,也可以是矩阵(返回每一列元素的几何平均数)

中位数

median(data) : 求数据data的中位数,数据data可以是向量,也可以是矩阵 (返回每一列元素的中位数)

求方差和标准差

var(data) : 求数据data的样本方差,数据data可以是向量,也可以是矩阵 (返回每一列元素的样本方差)
var(data,1) : 求数据data的母体方差,数据data可以是向量,也可以是矩阵 (返回每一列元素的母体方差)
std(data) : 求数据data的样本标准差,数据data可以是向量,也可以是矩阵 (返回每一列元素的样本标准差)

  • 0
    点赞
  • 0
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

打赏
文章很值,打赏犒劳作者一下
相关推荐
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客 返回首页

打赏

潇潇今天学习了吗

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者