Hive 数据定义

本文详细介绍了Hive中的数据定义语言(DDL),包括创建、查询、修改和删除数据库及表的操作。重点讨论了创建表的语法,如内部表、外部表、分区表的创建,以及管理表和外部表之间的转换。同时,还涵盖了表的重命名、添加/修改/替换列信息等修改操作。
摘要由CSDN通过智能技术生成

DDL数据定义

创建数据库

1)创建一个数据库,数据库在HDFS上的默认存储路径是/user/hive/warehouse/*.db。

hive (default)> create database db_hive; 

2)避免要创建的数据库已经存在错误,增加if not exists判断。(标准写法)

hive (default)> create database db_hive;
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. Database db_hive already exists
hive (default)> create database if not exists db_hive;

3)创建一个数据库,指定数据库在HDFS上存放的位置

hive (default)> create database db_hive2 location '/db_hive2.db'; 

查询数据库

显示数据库

1.显示数据库

hive> show databases; 

2.过滤显示查询的数据库

hive (default)> show databases like "db_hive*";
OK
database_name
db_hive
db_hive2
Time taken: 0.014 seconds, Fetched: 2 row(s)

查看数据库详情

1.显示数据库信息

hive (default)> desc database db_hive;
OK
db_name	comment	location	owner_name	owner_type	parameters
db_hive		hdfs://0.0.0.0:9000/user/hive/warehouse/db_hive.db root	USER	
Time taken: 0.027 seconds, Fetched: 1 row(s)

2.显示数据库详细信息,extended(不加额外属性时,查出来的东西跟不加extended一样)

hive (default)> desc database extended db_hive;
OK
db_name	comment	location	owner_name	owner_type	parameters
db_hive		hdfs://0.0.0.0:9000/user/hive/warehouse/db_hive.db root	USER	
Time taken: 0.031 seconds, Fetched: 1 row(s)

切换当前数据库

hive (default)> use db_hive; 

修改数据库

说是这么说,但实际上只能增加属性

用户可以使用ALTER DATABASE命令为某个数据库的dbproperties设置键-值对属性值,来描述这个数据库的属性信息。数据库的其他元数据信息都是不可更改的,包括数据库名和数据库所在的目录位置。

hive (default)> alter database db_hive set dbproperties('createtime'='20200130'); 

在hive中查看修改结果

hive (default)> desc database extended db_hive;
OK
db_name	comment	location	owner_name	owner_type	parameters
db_hive		hdfs://0.0.0.0:9000/user/hive/warehouse/db_hive.db root	USER	{createtime=20200130}
Time taken: 0.025 seconds, Fetched: 1 row(s)

删除数据库

1.删除空数据库

hive>drop database db_hive2; 

2.如果删除的数据库不存在,最好采用 if exists判断数据库是否存在

hive> drop database db_hive;
FAILED: SemanticException [Error 10072]: Database does not exist: db_hive
hive> drop database if exists db_hive2;

3.如果数据库不为空,可以采用cascade(层叠,,差不多跟递归的意思一样)命令,强制删除

hive> drop database db_hive;
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. InvalidOperationException(message:Database db_hive is not empty. One or more tables exist.)
hive> drop database db_hive cascade;

创建表

1.建表语法

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
[CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION hdfs_path]

2.字段解释说明

(1)CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXISTS 选项来忽略这个异常。

(2)EXTERNAL关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION),Hive创建内部表时,会将数据移动到数据仓库指向的路径;若创建外部表,仅记录数据所在的路径,不对数据的位置做任何改变。在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。

(3)COMMENT:为表和列添加注释。

(4)PARTITIONED BY创建分区表

(5)CLUSTERED BY创建分桶表

(6)SORTED BY不常用

(7)ROW FORMAT指定分隔符

(8)STORED AS指定存储文件类型

常用的存储文件类型:SEQUENCEFILE(二进制序列文件)、TEXTFILE(文本)、RCFILE(列式存储格式文件)

如果文件数据是纯文本,可以使用STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCEFILE。

(9)LOCATION :指定表在HDFS上的存储位置。

(10)LIKE允许用户复制现有的表结构,但是不复制数据。

管理表

1.理论

默认创建的表都是所谓的管理表,有时也被称为内部表。因为这种表,Hive会(或多或少地)控制着数据的生命周期。Hive默认情况下会将这些表的数据存储在由配置项hive.metastore.warehouse.dir(例如,/user/hive/warehouse)所定义的目录的子目录下。 当我们删除一个管理表时,Hive也会删除这个表中数据。管理表不适合和其他工具共享数据。

2.案例实操

(1)普通创建表

create table if not exists student2(
id int, name string
)
row format delimited fields terminated by '\t'  //指定分隔符
stored as textfile   //指定存储文件类型
location '/user/hive/warehouse/student2';

(2)根据查询结果创建表(查询的结果会添加到新创建的表中)

create table if not exists student3 as select id, name from student; 

(3)根据已经存在的表结构创建表

create table if not exists student4 like student; 

(4)查询表的格式化信息

hive (default)> desc formatted student2;
OK
col_name	data_type	comment
# col_name            	data_type           	comment             
	 	 
id                  	int                 	                    
name                	string              	                    
	 	 
# Detailed Table Information	 	 
Database:           	default             	 
Owner:              	root                	 
CreateTime:         	Sat Apr 20 14:15:53 CST 2019	 
LastAccessTime:     	UNKNOWN             	 
Protect Mode:       	None                	 
Retention:          	0                   	 
Location:           	hdfs://0.0.0.0:9000/user/hive/warehouse/student2	 
Table Type:         	MANAGED_TABLE       	 
Table Parameters:	 	 
	transient_lastDdlTime	1555740953          
	 	 
# Storage Information	 	 
SerDe Library:      	org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe	 
InputFormat:        	org.apache.hadoop.mapred.TextInputFormat    
OutputFormat:       	org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat	 
Compressed:         	No                  	 
Num Buckets:        	-1                  	 
Bucket Columns:     	[]                  	 
Sort Columns:       	[]                  	 
Storage Desc Params:	 	 
	field.delim         	\t                  
	serialization.format	\t                  
Time taken: 0.217 seconds, Fetched: 28 row(s)

外部表

1.理论

因为表是外部表,所以Hive并非认为其完全拥有这份数据。删除该表并不会删除掉这份数据,不过描述表的元数据信息会被删除掉。

2.管理表和外部表的使用场景

每天将收集到的网站日志定期流入HDFS文本文件。在外部表(原始日志表)的基础上做大量的统计分析,用到的中间表、结果表使用内部表存储,数据通过SELECT+INSERT进入内部表。

3.案例实操

分别创建部门和员工外部表,并向表中导入数据。

(1)原始数据,先准备这两个文件

dept.txt

10	ACCOUNTING	1700
20	RESEARCH	1800
30	SALES	1900
40	OPERATIONS	1700

emp.txt

7369	SMITH	CLERK	7902	1980-12-17	800.00		20
7499	ALLEN	SALESMAN	7698	1981-2-20	1600.00	300.00	30
7521	WARD	SALESMAN	7698	1981-2-22	1250.00	500.00	30
7566	JONES	MANAGER	7839	1981-4-2	2975.00		20
7654	MARTIN	SALESMAN	7698	1981-9-28	1250.00	1400.00	30
7698	BLAKE	MANAGER	7839	1981-5-1	2850.00		30
7782	CLARK	MANAGER	7839	1981-6-9	2450.00		10
7788	SCOTT	ANALYST	7566	1987-4-19	3000.00		20
7839	KING	PRESIDENT		1981-11-17	5000.00		10
7844	TURNER	SALESMAN	7698	1981-9-8	1500.00	0.00	30
7876	ADAMS	CLERK	7788	1987-5-23	1100.00		20
7900	JAMES	CLERK	7698	1981-12-3	950.00		30
7902	FORD	ANALYST	7566	1981-12-3	3000.00		20
7934	MILLER	CLERK	7782	1982-1-23	1300.00		10

(2)建表语句

创建部门表

create external table if not exists dept(
deptid int,
dname string,
loc int
)
row format delimited fields terminated by '\t';

创建员工表

create external table if not exists emp(
empid int,
ename string,
job string,
mgr int,
hiredate string,
sal double,
comm double,
deptno int)
row format delimited fields terminated by '\t';

(3)查看创建的表

hive (default)> show tables;
OK
tab_name
dept
emp
student2
test
Time taken: 0.031 seconds, Fetched: 4 row(s)

(4)向外部表中导入数据

导入数据

hive (default)> load data local inpath '/root/datas/dept.txt' into table dept;
hive (default)> load data local inpath '/root/datas/emp.txt' into table emp;

查询结果

hive (default)> select * from emp;
hive (default)> select * from dept;

管理表与外部表的互相转换

1 查询表的类型

hive (default)> desc formatted student2;
Table Type:             MANAGED_TABLE

2 修改内部表student2为外部表

alter table student2 set tblproperties('EXTERNAL'='TRUE'); 

3 查询表的类型

hive (default)> desc formatted student2;
Table Type:             EXTERNAL_TABLE

4 修改外部表student2为内部表

alter table student2 set tblproperties('EXTERNAL'='FALSE'); 

5 查询表的类型

hive (default)> desc formatted student2;
Table Type:             MANAGED_TABLE

注意:(‘EXTERNAL’=‘TRUE’)和(‘EXTERNAL’=‘FALSE’)为固定写法,区分大小写!

分区表

1.创建分区表语法

hive (default)> create table dept_partition(
deptno int, dname string, loc string
)
partitioned by (month string)
row format delimited fields terminated by '\t';

2.加载数据到分区表中

hive (default)> load data local inpath '/root/datas/dept.txt' into table dept_partition partition(month='20190420');
hive (default)> load data local inpath '/root/datas/dept.txt' into table dept_partition partition(month='20190421');
hive (default)> load data local inpath '/root/datas/dept.txt' into table dept_partition partition(month='20190422');

3.查看此时hdfs中表的目录结构

可以看到目录下面加了三个分区

4.查询分区表中数据

单分区查询

hive (default)> select * from dept_partition where month='20190420';

多分区联合查询

hive (default)> select * from dept_partition where month='20190420'
              union
              select * from dept_partition where month='20190421'
              union
              select * from dept_partition where month='20190422'; 
 这种方式会跑MapReduce程序来查询
 
还可以使用or来连接查询,这样不用跑mapreduce程序,效率更高
select * from dept_partition where month=20190420 
or month=20190421 or month=20190422;

查询结果为:
dept_partition.deptno	dept_partition.dname	dept_partition.loc dept_partition.month
10	ACCOUNTING	1700	20190420
20	RESEARCH	1800	20190420
30	SALES	1900	20190420
40	OPERATIONS	1700	20190420
10	ACCOUNTING	1700	20190421
20	RESEARCH	1800	20190421
30	SALES	1900	20190421
40	OPERATIONS	1700	20190421
10	ACCOUNTING	1700	20190422
20	RESEARCH	1800	20190422
30	SALES	1900	20190422
40	OPERATIONS	1700	20190422

5.增加分区

创建单个分区

hive (default)> alter table dept_partition add partition(month='20190423') ; 

同时创建多个分区

hive (default)> alter table dept_partition add partition(month='20190424') partition(month='20190425'); 

6.删除分区

删除单个分区

hive (default)> alter table dept_partition drop partition (month='20190423');
Dropped the partition month=20190423
OK
Time taken: 0.358 seconds

同时删除多个分区

hive (default)> alter table dept_partition drop partition (month='20190424'), partition (month='20190425');
Dropped the partition month=20190424
Dropped the partition month=20190425
OK
Time taken: 0.775 seconds

7.查看分区表有多少分区

hive (default)> show partitions dept_partition;
OK
partition
month=20190420
month=20190421
month=20190422
Time taken: 0.088 seconds, Fetched: 3 row(s)

8.查看分区表结构

hive (default)> desc dept_partition;
OK
col_name	data_type	comment
deptno              	int                 	                    
dname               	string              	                    
loc                 	string              	                    
month               	string              	                    
	 	 
# Partition Information	 	 
# col_name            	data_type           	comment             
	 	 
month               	string              	                    
Time taken: 0.116 seconds, Fetched: 9 row(s)

分区表注意事项

1.创建二级分区表

hive (default)> create table dept_partition2(
               deptno int, dname string, loc string
               )
               partitioned by (month string, day string)
               row format delimited fields terminated by '\t';

2.正常的加载数据

(1)加载数据到二级分区表中

hive (default)> load data local inpath '/root/datas/dept.txt' into table dept_partition2 partition(month='201904',day='20');

(2)查询分区数据

hive (default)> select * from dept_partition2 where month='201904' and day='20';
OK
dept_partition2.deptno	dept_partition2.dname	dept_partition2.locdept_partition2.month	dept_partition2.day
10	ACCOUNTING	1700	201904	20
20	RESEARCH	1800	201904	20
30	SALES	1900	201904	20
40	OPERATIONS	1700	201904	20
Time taken: 0.128 seconds, Fetched: 4 row(s)

3.把数据直接上传到分区目录上,让分区表和数据产生关联的三种方式

(1)方式一:上传数据后修复

上传数据

hive (default)> dfs -mkdir -p /user/hive/warehouse/dept_partition2/month=201904/day=21;
hive (default)> dfs -put /root/datas/dept.txt  /user/hive/warehouse/dept_partition2/month=201904/day=21;

查询数据(查询不到刚上传的数据)

hive (default)> select * from dept_partition2 where month='201904' and day='21'; 

执行修复命令(因为只是上传了数据,但是hive中没有存储相关的元数据,修复之后就可以了)

hive> msck repair table dept_partition2; 

再次查询数据

hive (default)> select * from dept_partition2 where month='201904' and day='21'; 

(2)方式二:上传数据后添加分区

上传数据

hive (default)> dfs -mkdir -p /user/hive/warehouse/dept_partition2/month=201904/day=22;
hive (default)> dfs -put /root/datas/dept.txt  /user/hive/warehouse/dept_partition2/month=201904/day=22;

执行添加分区

hive (default)> alter table dept_partition2 add partition(month='201904',day='22'); 

查询数据

hive (default)> select * from dept_partition2 where month='201904' and day='22'; 

(3)方式三:创建文件夹后load数据到分区

创建目录

hive (default)> dfs -mkdir -p /user/hive/warehouse/dept_partition2/month=201904/day=23; 

上传数据

hive (default)> load data local inpath '/root/datas/dept.txt' into table dept_partition2 partition(month='201904',day='23'); 

查询数据

hive (default)> select * from dept_partition2 where month='201904' and day='23'; 

修改表

重命名表

1.语法

ALTER TABLE table_name RENAME TO new_table_name 

2.实操案例

hive (default)> alter table dept_partition2 rename to dept_partition3; 

增加/修改/替换列信息

1.语法

更新列

ALTER TABLE table_name CHANGE [COLUMN] col_old_name col_new_name column_type [COMMENT col_comment] [FIRST|AFTER column_name] 

增加和替换列

ALTER TABLE table_name ADD|REPLACE COLUMNS (col_name data_type [COMMENT col_comment], ...) 

注:ADD是代表新增一字段,字段位置在所有列后面(partition列前),REPLACE则是表示替换表中所有字段。

2.实操案例

(1)查询表结构

(2)添加列

hive (default)> alter table dept_partition add columns(deptdesc string); 

(3)查询表结构

(4)更新列

hive (default)> alter table dept_partition change column deptdesc desc int; 

(5)查询表结构

(6)替换列(将列全部替换,相当于抛弃原来的结构)

hive (default)> alter table dept_partition replace columns(deptno string, dname string, loc string); 

(7)查询表结构

删除表

hive (default)> drop table dept_partition; 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值