NTIRE2022双目超分赛道冠军方案解读——NAFSSR 双目超分旨在从成对的低分辨率左右图像中重建出高分辨率的细节。对于这个目标来说,单视角的上下文信息(intra-view information)和左右图像之间的信息(cross-view information)是尤为关键的。
NTIRE 2023 Challenge on Efficient Super-Resolution——RepRFN:当RFDN遇到重参数化 为了解决在资源受限的设备上很难部署超分模型(模型参数、计算量过大)的问题,本文探索了轻量化超分中信息蒸馏机制(information distillation mechanism)和残差学习机制(residual learning mechanism)在性能和效率上的差异,提出了基于重参数化(reparameterization)的轻量级超分网络结构,叫做RepRFN。
NTIRE2023 图像复原和增强赛事Efficient Super-Resolution赛道冠军方案解读——DIPNet 本篇文章着重于NTIRE 2023高效超分辨率(efficient super-resolution)挑战赛的冠军方案的解读,学习能够提升任务的tricks,以期给相关的科研任务一些启发。NTIRE 2023高效超分辨率挑战赛的目标是以RFDN(AIM 2020 高效超分辨率冠军)为baseline,以尽量少的推理时间(runtime),参数量(parameters),计算量(FLOPs),激活值(activations)和显存占用(memory consumption)实现4倍超分。
NTIRE 2022 Challenge on Stereo Image Super-Resolution比赛报告解读 NTIRE 的全称为New Trends in Image Restoration and Enhancement Challenges,即“图像复原和复原挑战中的新趋势”,是CVPR(IEEE Conference on Computer Vision and Pattern Recognition)举办的极具影响力的计算机视觉底层任务比赛,主要涉及的研究方向有:图像超分辨率、图像去噪、去模糊、去摩尔纹、重建和去雾等。
单图像超分辨率重建总结 单图像超分辨率重建(Single Image Super-resolution Reconstruction,SISR)旨在从给定的低分辨率(LR)图像中,重建含有清晰细节特征的高分辨率(HR)图像,是计算机视觉中较为底层的任务。
深度学习 Green Citrus Detection and Counting in Orchards Based on YOLOv5-CS and AI Edge System 论文篇 实现了柑橘的检测与计数,算法的基础是YOLOv5和DeepSORT
四种Normalization(标准化)简要介绍 神经网络通常需要标准化,标准化的方法多种多样。本文将简要介绍Batch Norm、Layer Norm、Instance Norm和Group Norm的基本概念。
使用 MMDetection训练自己的数据集(Colab版) 使用指南挂载谷歌云盘from google.colab import drivedrive.mount('/content/drive')确认连到GPUimport tensorflow as tfdevice_name = tf.test.gpu_device_name()if device_name != '/device:GPU:0': raise SystemError('没有发现GPU device')print('Found GPU at: {}'.format(de
colab使用宝典 使用指南挂载谷歌云盘from google.colab import drivedrive.mount('/content/drive')安装依赖!pip install torch==1.7.0 torchvision!pip install opencv-python确认连到GPUimport tensorflow as tfdevice_name = tf.test.gpu_device_name()if device_name != '/device:GPU:0':
排序算法代码仓库 经典排序算法插入排序#include <iostream>#include <algorithm>#include <cstdio>using namespace std;const int N=1e6+1000;int n;int a[N];void insert_sort(){ for(int i=2; i<=n; i++) { if(a[i]<a[i-1]) {
逆序对个数(归并排序) 数对 (归并排序)题目链接:https://ac.nowcoder.com/acm/contest/27274/H来源:牛客网Problem Description链接:https://ac.nowcoder.com/acm/contest/27274/H来源:牛客网在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。比如一个序列为4 5 1 3 2, 那么这个序列的逆序数为7,逆序对分别为(4, 1),
leetcode-第247场周赛-5798循环轮转矩阵(模拟题) 5798. 循环轮转矩阵(模拟题)题目链接:https://leetcode-cn.com/problems/cyclically-rotating-a-grid/题目:给你一个大小为 m x n 的整数矩阵 grid ,其中 m 和 n 都是 偶数 ;另给你一个整数 k 。矩阵由若干层组成,如下图所示,每种颜色代表一层:矩阵的循环轮转是通过分别循环轮转矩阵中的每一层完成的。在对某一层进行一次循环旋转操作时,层中的每一个元素将会取代其 逆时针 方向的相邻元素。轮转示例如下:返回执行 k
马氏距离例题详解(全网最详细) 马氏距离例题详解定义马哈拉诺比斯距离是由印度统计学家马哈拉诺比斯 (英语)提出的,表示数据的协方差距离。它是一种有效的计算两个未知样本集的相似度的方法。与欧氏距离不同的是它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者是有关联的)并且是尺度无关的(scale-invariant),即独立于测量尺度。 对于一个均值为μ=(μ1,μ2,μ3,…,μp)T{\displaystyle \mu =(\mu _{1},\mu _{2},\mu _{3},\dots ,\mu
群巨救我……(期望DP) 群巨救我……(期望DP)题目链接:https://ac.nowcoder.com/acm/contest/17583/E题目来源:牛客网Problem Description众所周知,牛可乐 的口胡能力十分强大牛可乐 要讲 n 件事情,我们把这些事情从 1∼n 标号。牛可乐每讲一件事需要耗费一个单位的时间,但是牛可乐讲事情和普通人不同:牛可乐在讲完 第 i 件事时,只有 pi{p_i}pi的概率继续讲下一件事(第 i+1 件),也就是说,牛可乐讲完第 i 件事后有 (1-pip_ipi)的