1. 判断是否存在数据倾斜
相同 Task 的多个 Subtask 中,个别Subtask 接收到的数据量明显大于其他 Subtask 接收到的数据量,通过 Flink Web UI 可以精确地看到每个 Subtask 处理了多少数据,即可判断出 Flink 任务是否存在数据倾斜。通常,数据倾斜也会引起反压。

2.数据倾斜的解决
2.1 keyBy 之前发生数据倾斜
如果 keyBy 之前就存在数据倾斜,上游算子的某些实例可能处理的数据较多,某些实例可能处理的数据较少,产生该情况可能是因为数据源的数据本身就不均匀,例如由于某些原因 Kafka 的 topic 中某些 partition 的数据量较大,某些 partition 的数据量较少。对于不存在 keyBy 的 Flink 任务也会出现该情况。
这种情况,需要让 Flink 任务强制进行shuffle。使用shuffle、rebalance 或 rescale算子即可将数据均匀分配,从而解决数据倾斜的问题。
2.2 keyBy 后的聚合操作存在数据倾斜
使用LocalKeyBy的思想:在 keyBy 上游算子数据发送之前,首先在上游算子的本地
对数据进行聚合后再发送到下游,使下游接收到的数据量大大减少,从而使得 keyBy 之后的聚合操作不再是任务的瓶颈。类似MapReduce 中 Combiner 的思想,但是这要求聚合操作必须是多条数据或者一批数据才能聚合,单条数据没有办法通过聚合来减少数据量。从Flink LocalKeyBy 实现原理来讲,必然会存在一个积攒批次的过程,在上游算子中必须攒够一定的数据量,对这些数据聚合后再发送到下游。
注意:Flink是实时流处理,如果keyby之后的聚合操作存在数据倾斜,且没有开窗口的情况下,简单的认为使用两阶段聚合,是不能解决问题的。因为这个时候Flink是来一条处理一条,且向下游发送一条结果,对于原来keyby的维度(第二阶段聚合)来讲,数据量并没有减少,且结果重复计算(非FlinkSQL,未使用回撤流),如下图所示:

实现方式:以计算PV为例,keyby之前,使用flatMap实现LocalKeyby
class LocalKeyByFlatMap extends RichFlatMapFunction<String, Tuple2<String,
//Checkpoint 时为了保证 Exactly Once,将 buffer 中的数据保存到该 ListState 中
private ListState<Tuple2<String, Long>> localPvStatListState;
//本地 buffer,存放 local 端缓存的 app 的 pv 信息
private HashMap<String, Long> localPvStat;
//缓存的数据量大小,即:缓存多少数据再向下游发送
private int batchSize;
//计数器,获取当前批次接收的数据量
private AtomicInteger currentSize;
//构造器,批次大小传参
LocalKeyByFlatMap(int batchSize){
this.batchSize = batchSize;
}
@Override
public void flatMap(String in, Collector collector) throws Exception {
// 将新来的数据添加到 buffer 中
Long pv = localPvStat.getOrDefault(in, 0L);
localPvStat.put(in, pv + 1);
// 如果到达设定的批次,则将 buffer 中的数据发送到下游
if(currentSize.incrementAndGet() >= batchSize){
// 遍历 Buffer 中数据,发送到下游
for(Map.Entry<String, Long> appIdPv: localPvStat.entrySet()) {
collector.collect(Tuple2.of(appIdPv.getKey(), appIdPv.getValue()
}
// Buffer 清空,计数器清零
localPvStat.clear();
currentSize.set(0);
}
}
@Override
public void snapshotState(FunctionSnapshotContext functionSnapshotConte
// 将 buffer 中的数据保存到状态中,来保证 Exactly Once
localPvStatListState.clear();
for(Map.Entry<String, Long> appIdPv: localPvStat.entrySet()) {
localPvStatListState.add(Tuple2.of(appIdPv.getKey(), appIdPv.ge
}
}
@Override
public void initializeState(FunctionInitializationContext context) {
// 从状态中恢复 buffer 中的数据
localPvStatListState = context.getOperatorStateStore().getListState
new ListStateDescriptor<>("localPvStat",
TypeInformation.of(new TypeHint<Tuple2<String, Long>>})));
localPvStat = new HashMap();
if(context.isRestored()) {
// 从状态中恢复数据到 localPvStat 中
for(Tuple2<String, Long> appIdPv: localPvStatListState.get()){
long pv = localPvStat.getOrDefault(appIdPv.f0, 0L);
// 如果出现 pv != 0,说明改变了并行度,
// ListState 中的数据会被均匀分发到新的 subtask中
// 所以单个 subtask 恢复的状态中可能包含两个相同的 app 的数据
localPvStat.put(appIdPv.f0, pv + appIdPv.f1);
}
// 从状态恢复时,默认认为 buffer 中数据量达到了 batchSize,需要向下游发
currentSize = new AtomicInteger(batchSize);
} else {
currentSize = new AtomicInteger(0);
}
}
}
2.3 keyBy 后的窗口聚合操作存在数据倾斜
因为使用了窗口,变成了有界数据的处理(3.2.2已分析过),窗口默认是触发时才会输出一条结果发往下游,所以可以使用两阶段聚合的方式:
实现思路:
- 第一阶段聚合:key拼接随机数前缀或后缀,进行keyby、开窗、聚合注意:聚合完不再是WindowedStream要获取WindowEnd作为窗口标记作为第二阶段分组依据,避免不同窗口的结果聚合到一起)
- 第二阶段聚合:去掉随机数前缀或后缀,按照原来的key及windowEnd作keyby、聚合
本文介绍了如何通过Flink WebUI检测数据倾斜现象,重点讲解了keyBy前后的数据倾斜解决方案,包括shuffle、LocalKeyBy和两阶段窗口聚合。针对不同场景,提供了代码示例来演示如何应用这些策略。
1734

被折叠的 条评论
为什么被折叠?



