算法题 最小生成树-02-继续畅通工程

省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。现得到城镇道路统计表,表中列出了任意两城镇间修建道路的费用,以及该道路是否已经修通的状态。现请你编写程序,计算出全省畅通需要的最低成本。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( 1< N < 100 );随后的 N(N-1)/2 行对应村庄间道路的成本及修建状态,每行给4个正整数,分别是两个村庄的编号(从1编号到N),此两村庄间道路的成本,以及修建状态:1表示已建,0表示未建。

当N为0时输入结束。
Output
每个测试用例的输出占一行,输出全省畅通需要的最低成本。
Sample Input
3
1 2 1 0
1 3 2 0
2 3 4 0
3
1 2 1 0
1 3 2 0
2 3 4 1
3
1 2 1 0
1 3 2 1
2 3 4 1
0
Sample Output
3
1
0

思路:还是最小生成树问题,做多一个判断有路的先加入集合先在接着算就好了

#include<iostream>
#include<algorithm>
using namespace std;
int n, m;
struct Edge
{
	int u, v, w,s;
	const bool operator <(const Edge&rhs)const {
		return w < rhs.w;
	}
}edge[6000];
int fa[105];
int find(int x) {
	if (fa[x] == x) return x;
	else return fa[x] = find(fa[x]);
}
int kruskal() {
	int ans = 0, cnt = 0;
	for (int i = 0; i <= n; i++) {
		fa[i] = i;
	}
	sort(edge, edge + m);
	for (int i = 0; i < m; i++) {
		int q = edge[i].s;
		int x = find(edge[i].u);
		int y = find(edge[i].v);
		if (q == 1) {
			fa[x] = y;
			cnt++;
		}
	}
	for (int i = 0; i < m; i++) {
		int x = find(edge[i].u);
		int y = find(edge[i].v);
		if (x != y) 
		{
			ans += edge[i].w;
			fa[x] = y;
			cnt++;
		}
		
		if (cnt == n - 1) {
			break;
		}
	}
	return ans;
}
int main() {
	while (scanf("%d",&n) != EOF) {
		if (n == 0) {
			break;
		}
		m = n * (n - 1) / 2;
		int a, b,len,station;
		for (int j = 0; j <m ; j++) {
			scanf("%d %d %d %d", &a, &b, &len,&station);
			edge[j].u = a;
			edge[j].v = b;
			edge[j].w = len;
			edge[j].s = station;
		}
		int z = kruskal();
		printf("%d\n", z);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值